39 research outputs found

    Cohomology in electromagnetic modeling

    Full text link
    Electromagnetic modeling provides an interesting context to present a link between physical phenomena and homology and cohomology theories. Over the past twenty-five years, a considerable effort has been invested by the computational electromagnetics community to develop fast and general techniques for potential design. When magneto-quasi-static discrete formulations based on magnetic scalar potential are employed in problems which involve conductive regions with holes, \textit{cuts} are needed to make the boundary value problem well defined. While an intimate connection with homology theory has been quickly recognized, heuristic definitions of cuts are surprisingly still dominant in the literature. The aim of this paper is first to survey several definitions of cuts together with their shortcomings. Then, cuts are defined as generators of the first cohomology group over integers of a finite CW-complex. This provably general definition has also the virtue of providing an automatic, general and efficient algorithm for the computation of cuts. Some counter-examples show that heuristic definitions of cuts should be abandoned. The use of cohomology theory is not an option but the invaluable tool expressly needed to solve this problem

    Euler Characteristic Curves and Profiles: a stable shape invariant for big data problems

    Full text link
    Tools of Topological Data Analysis provide stable summaries encapsulating the shape of the considered data. Persistent homology, the most standard and well studied data summary, suffers a number of limitations; its computations are hard to distribute, it is hard to generalize to multifiltrations and is computationally prohibitive for big data-sets. In this paper we study the concept of Euler Characteristics Curves, for one parameter filtrations and Euler Characteristic Profiles, for multi-parameter filtrations. While being a weaker invariant in one dimension, we show that Euler Characteristic based approaches do not possess some handicaps of persistent homology; we show efficient algorithms to compute them in a distributed way, their generalization to multifiltrations and practical applicability for big data problems. In addition we show that the Euler Curves and Profiles enjoys certain type of stability which makes them robust tool in data analysis. Lastly, to show their practical applicability, multiple use-cases are considered.Comment: 32 pages, 19 figures. Added remark on multicritical filtrations in section 4, typos correcte

    Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence Diagrams

    Full text link
    In topological data analysis (TDA), persistence diagrams have been a succesful tool. To compare them, Wasserstein and Bottleneck distances are commonly used. We address the shortcomings of these metrics and show a way to investigate them in a systematic way by introducing bottleneck profiles. This leads to a notion of discrete Prokhorov metrics for persistence diagrams as a generalization of the Bottleneck distance. They satisfy a stability result and bounds with respect to Wasserstein metrics. We provide algorithms to compute the newly introduced quantities and end with an discussion about experiments.Comment: 31 pages, 12 figures; improved exposition, fixed various inaccuracies, added another experimen

    Persistence Bag-of-Words for Topological Data Analysis

    Full text link
    Persistent homology (PH) is a rigorous mathematical theory that provides a robust descriptor of data in the form of persistence diagrams (PDs). PDs exhibit, however, complex structure and are difficult to integrate in today's machine learning workflows. This paper introduces persistence bag-of-words: a novel and stable vectorized representation of PDs that enables the seamless integration with machine learning. Comprehensive experiments show that the new representation achieves state-of-the-art performance and beyond in much less time than alternative approaches.Comment: Accepted for the Twenty-Eight International Joint Conference on Artificial Intelligence (IJCAI-19). arXiv admin note: substantial text overlap with arXiv:1802.0485

    Topology-Driven Goodness-of-Fit Tests in Arbitrary Dimensions

    Full text link
    This paper adopts a tool from computational topology, the Euler characteristic curve (ECC) of a sample, to perform one- and two-sample goodness of fit tests, we call TopoTests. The presented tests work for samples in arbitrary dimension, having comparable power to the state of the art tests in the one dimensional case. It is demonstrated that the type I error of TopoTests can be controlled and their type II error vanishes exponentially with increasing sample size. Extensive numerical simulations of TopoTests are conducted to demonstrate their power.Comment: 28 pages, 13 figure
    corecore