237 research outputs found
Sponsored Search, Market Equilibria, and the Hungarian Method
Matching markets play a prominent role in economic theory. A prime example of
such a market is the sponsored search market. Here, as in other markets of that
kind, market equilibria correspond to feasible, envy free, and bidder optimal
outcomes. For settings without budgets such an outcome always exists and can be
computed in polynomial-time by the so-called Hungarian Method. Moreover, every
mechanism that computes such an outcome is incentive compatible. We show that
the Hungarian Method can be modified so that it finds a feasible, envy free,
and bidder optimal outcome for settings with budgets. We also show that in
settings with budgets no mechanism that computes such an outcome can be
incentive compatible for all inputs. For inputs in general position, however,
the presented mechanism---as any other mechanism that computes such an outcome
for settings with budgets---is incentive compatible
Simplicity-Expressiveness Tradeoffs in Mechanism Design
A fundamental result in mechanism design theory, the so-called revelation
principle, asserts that for many questions concerning the existence of
mechanisms with a given outcome one can restrict attention to truthful direct
revelation-mechanisms. In practice, however, many mechanism use a restricted
message space. This motivates the study of the tradeoffs involved in choosing
simplified mechanisms, which can sometimes bring benefits in precluding bad or
promoting good equilibria, and other times impose costs on welfare and revenue.
We study the simplicity-expressiveness tradeoff in two representative settings,
sponsored search auctions and combinatorial auctions, each being a canonical
example for complete information and incomplete information analysis,
respectively. We observe that the amount of information available to the agents
plays an important role for the tradeoff between simplicity and expressiveness
Algorithms as Mechanisms: The Price of Anarchy of Relax-and-Round
Many algorithms that are originally designed without explicitly considering
incentive properties are later combined with simple pricing rules and used as
mechanisms. The resulting mechanisms are often natural and simple to
understand. But how good are these algorithms as mechanisms? Truthful reporting
of valuations is typically not a dominant strategy (certainly not with a
pay-your-bid, first-price rule, but it is likely not a good strategy even with
a critical value, or second-price style rule either). Our goal is to show that
a wide class of approximation algorithms yields this way mechanisms with low
Price of Anarchy.
The seminal result of Lucier and Borodin [SODA 2010] shows that combining a
greedy algorithm that is an -approximation algorithm with a
pay-your-bid payment rule yields a mechanism whose Price of Anarchy is
. In this paper we significantly extend the class of algorithms for
which such a result is available by showing that this close connection between
approximation ratio on the one hand and Price of Anarchy on the other also
holds for the design principle of relaxation and rounding provided that the
relaxation is smooth and the rounding is oblivious.
We demonstrate the far-reaching consequences of our result by showing its
implications for sparse packing integer programs, such as multi-unit auctions
and generalized matching, for the maximum traveling salesman problem, for
combinatorial auctions, and for single source unsplittable flow problems. In
all these problems our approach leads to novel simple, near-optimal mechanisms
whose Price of Anarchy either matches or beats the performance guarantees of
known mechanisms.Comment: Extended abstract appeared in Proc. of 16th ACM Conference on
Economics and Computation (EC'15
Paul Dütting – Designing auctions for re-allocating spectrum rights
An interview with Paul Dütting on the Federal Communications Commission Incentive Auctions, Paul was an LSE Fellow in the Department of Mathematics in the academic year 2014-2015. He is now a Senior Researcher at ETH Zürich. Visit Paul’s homepage to learn more about his research on Algorithmic Game Theory, or to download his article on spectrum auctions and the SET for BRITAIN poster
Best-response dynamics in combinatorial auctions with item bidding
In a combinatorial auction with item bidding, agents participate in multiple single-item second-price auctions at once. As some items might be substitutes, agents need to strate- gize in order to maximize their utilities. A number of results indicate that high welfare can be achieved this way, giving bounds on the welfare at equilibrium. Recently, however, criticism has been raised that equilibria are hard to compute and therefore unlikely to be attained. In this paper, we take a different perspective. We study simple best-response dynamics. That is, agents are activated one after the other and each activated agent updates his strategy myopically to a best response against the other agents’ current strategies. Often these dynamics may take exponentially long before they converge or they may not converge at all. However, as we show, convergence is not even necessary for good welfare guarantees. Given that agents’ bid updates are aggressive enough but not too aggressive, the game will remain in states of good welfare after each agent has updated his bid at least once. In more detail, we show that if agents have fractionally subadditive valuations, natural dynamics reach and remain in a state that provides a 1/3 approximation to the optimal welfare after each agent has updated his bid at least once. For subadditive valuations, we can guarantee an Ω(1/log m) approximation in case of m items that applies after each agent has updated his bid at least once and at any point after that. The latter bound is complemented by a negative result, showing that no kind of best-response dynamics can guarantee more than a an o(log log m/ log m) fraction of the optimal social welfare
Expressiveness and Robustness of First-Price Position Auctions
Since economic mechanisms are often applied to very different instances of
the same problem, it is desirable to identify mechanisms that work well in a
wide range of circumstances. We pursue this goal for a position auction setting
and specifically seek mechanisms that guarantee good outcomes under both
complete and incomplete information. A variant of the generalized first-price
mechanism with multi-dimensional bids turns out to be the only standard
mechanism able to achieve this goal, even when types are one-dimensional. The
fact that expressiveness beyond the type space is both necessary and sufficient
for this kind of robustness provides an interesting counterpoint to previous
work on position auctions that has highlighted the benefits of simplicity. From
a technical perspective our results are interesting because they establish
equilibrium existence for a multi-dimensional bid space, where standard
techniques break down. The structure of the equilibrium bids moreover provides
an intuitive explanation for why first-price payments may be able to support
equilibria in a wider range of circumstances than second-price payments
Spectrum auctions: greed is good… if you do it well!
We devise a new auction mechanism for combinatorial auctions, such as the upcoming “incentive auctions” for re-allocating spectrum rights. Our mechanism achieves optimal social welfare subject to computability, and possesses an impressive list of incentive properties
An O(log log m) prophet inequality for subadditive combinatorial auctions
Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case competitive analysis, of particular importance in the design and analysis of simple (posted-price) incentive compatible mechanisms with provable approximation guarantees. A central open problem in this area concerns subadditive combinatorial auctions. Here n agents with subadditive valuation functions compete for the assignment of m items. The goal is to find an allocation of the items that maximizes the total value of the assignment. The question is whether there exists a prophet inequality for this problem that significantly beats the best known approximation factor of O(log m). We make major progress on this question by providing an O(log log m) prophet inequality. Our proof goes through a novel primal-dual approach. It is also constructive, resulting in an online policy that takes the form of static and anonymous item prices that can be computed in polynomial time given appropriate query access to the valuations. As an application of our approach, we construct a simple and incentive compatible mechanism based on posted prices that achieves an O(log log m) approximation to the optimal revenue for subadditive valuations under an item-independence assumption
- …