1,728 research outputs found

    Entanglement molecules

    Get PDF
    We investigate the entanglement properties of multiparticle systems, concentrating on the case where the entanglement is robust against disposal of particles. Two qubits -belonging to a multipartite system- are entangled in this sense iff their reduced density matrix is entangled. We introduce a family of multiqubit states, for which one can choose for any pair of qubits independently whether they should be entangled or not as well as the relative strength of the entanglement, thus providing the possibility to construct all kinds of ''Entanglement molecules''. For some particular configurations, we also give the maximal amount of entanglement achievable.Comment: 4 pages, 1 figur

    Equivalence classes of non-local unitary operations

    Full text link
    We study when a multipartite non--local unitary operation can deterministically or probabilistically simulate another one when local operations of a certain kind -in some cases including also classical communication- are allowed. In the case of probabilistic simulation and allowing for arbitrary local operations, we provide necessary and sufficient conditions for the simulation to be possible. Deterministic and probabilistic interconversion under certain kinds of local operations are used to define equivalence relations between gates. In the probabilistic, bipartite case this induces a finite number of classes. In multiqubit systems, however, two unitary operations typically cannot simulate each other with non-zero probability of success. We also show which kind of entanglement can be created by a given non--local unitary operation and generalize our results to arbitrary operators.Comment: (1) 9 pages, no figures, submitted to QIC; (2) reference added, minor change

    Deterministic superreplication of one-parameter unitary transformations

    Full text link
    We show that one can deterministically generate out of NN copies of an unknown unitary operation up to N2N^2 almost perfect copies. The result holds for all operations generated by a Hamiltonian with an unknown interaction strength. This generalizes a similar result in the context of phase covariant cloning where, however, super-replication comes at the price of an exponentially reduced probability of success. We also show that multiple copies of unitary operations can be emulated by operations acting on a much smaller space, e.g., a magnetic field acting on a single nn-level system allows one to emulate the action of the field on n2n^2 qubits.Comment: 4 pages, 2 figures. The title has changed from Deterministic Super-replication of unitary operators to Deterministic Superreplication of One-Parameter Unitary Transformations to reflect the title of the published version. Version 2 is the published versio

    Quantum simulation of classical thermal states

    Full text link
    We establish a connection between ground states of local quantum Hamiltonians and thermal states of classical spin systems. For any discrete classical statistical mechanical model in any spatial dimension, we find an associated quantum state such that the reduced density operator behaves as the thermal state of the classical system. We show that all these quantum states are unique ground states of a universal 5-body local quantum Hamiltonian acting on a (polynomially enlarged) system of qubits arranged on a 2D lattice. The only free parameters of the quantum Hamiltonian are coupling strengthes of two-body interactions, which allow one to choose the type and dimension of the classical model as well as the interaction strength and temperature.Comment: 4 pages, 1 figur

    Macroscopic superpositions require tremendous measurement devices

    Get PDF
    We consider fundamental limits on the detectable size of macroscopic quantum superpositions. We argue that a full quantum mechanical treatment of system plus measurement device is required, and that a (classical) reference frame for phase or direction needs to be established to certify the quantum state. When taking the size of such a classical reference frame into account, we show that to reliably distinguish a quantum superposition state from an incoherent mixture requires a measurement device that is quadratically bigger than the superposition state. Whereas for moderate system sizes such as generated in previous experiments this is not a stringent restriction, for macroscopic superpositions of the size of a cat the required effort quickly becomes intractable, requiring measurement devices of the size of the Earth. We illustrate our results using macroscopic superposition states of photons, spins, and position. Finally, we also show how this limitation can be circumvented by dealing with superpositions in relative degrees of freedom.Comment: 20 pages (including appendices), 1 Figur

    Tensor operators: constructions and applications for long-range interaction systems

    Full text link
    We consider the representation of operators in terms of tensor networks and their application to ground-state approximation and time evolution of systems with long-range interactions. We provide an explicit construction to represent an arbitrary many-body Hamilton operator in terms of a one-dimensional tensor network, i.e. as a matrix product operator. For pairwise interactions, we show that such a representation is always efficient and requires a tensor dimension growing only linearly with the number of particles. For systems obeying certain symmetries or restrictions we find optimal representations with minimal tensor dimension. We discuss the analytic and numerical approximation of operators in terms of low-dimensional tensor operators. We demonstrate applications for time evolution and ground-state approximation, in particular for long-range interaction with inhomogeneous couplings. The operator representations are also generalized to other geometries such as trees and 2D lattices, where we show how to obtain and use efficient tensor network representations respecting a given geometry.Comment: 19 pages, 13 figure
    corecore