7 research outputs found

    Evaluation and Analysis of Selective Deployment of Power Optimizers for Residential PV Systems

    No full text
    Partial shading is widely considered to be a limiting factor in the performance of photovoltaic (PV) systems applied in urban environments. Modern system architectures, combined with per module deployment of power electronics, have been used to improve performance, especially at heterogeneous irradiance conditions, but they come with a high investment cost. In this paper, another approach is used to evaluate the selective deployment of power optimizers (SDPO), which can operate with a variety of string inverters and can be retrofitted in PV systems suffering from high shading losses. A combination of modelling and outdoor field testing showed the benefits and drawbacks of SDPOs in a variety of shading scenarios. Results suggest that there is an energy yield increase of 1–2% on an annual basis compared to that of a reference system. The exact level of increase depends on the shading patterns and combination scenarios used in this paper

    Evaluation and Analysis of Selective Deployment of Power Optimizers for Residential PV Systems

    Get PDF
    Partial shading is widely considered to be a limiting factor in the performance of photovoltaic (PV) systems applied in urban environments. Modern system architectures, combined with per module deployment of power electronics, have been used to improve performance, especially at heterogeneous irradiance conditions, but they come with a high investment cost. In this paper, another approach is used to evaluate the selective deployment of power optimizers (SDPO), which can operate with a variety of string inverters and can be retrofitted in PV systems suffering from high shading losses. A combination of modelling and outdoor field testing showed the benefits and drawbacks of SDPOs in a variety of shading scenarios. Results suggest that there is an energy yield increase of 1–2% on an annual basis compared to that of a reference system. The exact level of increase depends on the shading patterns and combination scenarios used in this paper

    Evaluation and Analysis of Selective Deployment of Power Optimizers for Residential PV Systems

    No full text
    Partial shading is widely considered to be a limiting factor in the performance of photovoltaic (PV) systems applied in urban environments. Modern system architectures, combined with per module deployment of power electronics, have been used to improve performance, especially at heterogeneous irradiance conditions, but they come with a high investment cost. In this paper, another approach is used to evaluate the selective deployment of power optimizers (SDPO), which can operate with a variety of string inverters and can be retrofitted in PV systems suffering from high shading losses. A combination of modelling and outdoor field testing showed the benefits and drawbacks of SDPOs in a variety of shading scenarios. Results suggest that there is an energy yield increase of 1–2% on an annual basis compared to that of a reference system. The exact level of increase depends on the shading patterns and combination scenarios used in this paper

    Outdoor characterization of colored and textured prototype PV facade elements

    Get PDF
    The aim of this study is to assess the performance of prototype PV façade elements of various PV technologies, colors and textures. Within this context, a prototype PV façade demonstrator was constructed and monitored at SolarBEAT, Eindhoven. This prototype demonstrator consists of 9 façade PV panels of c-Si and CIGS technologies with flat and textured solar glasses and black, grey and red colors. The field-testing results indicate a limited performance drop of less than 20% for all colors and textures

    Combination of Advanced Optical Modelling with Electrical Simulation for Performance Evaluation of Practical 4-terminal Perovskite/c-Si Tandem Modules

    No full text
    The perovskite solar cell is considered a promising candidate as the top cell for high-efficiency tandem devices with crystalline silicon (c-Si) bottom cells, contributing to the cost reduction of photovoltaic energy. In this contribution, a simulation method, involving optical and electrical modelling, is established to calculate the performance of 4-terminal (4T) perovskite/c-Si tandem devices on a mini-module level. Optical and electrical characterization of perovskite and c-Si solar cells are carried out to verify the simulation parameters. With our method, the influence of transparent conductive oxide (TCO) layer thickness of perovskite top cells on the performance of tandem mini-modules is investigated in case of both tin-doped indium oxide (ITO) and hydrogen-doped indium oxide (IO:H). The investigation shows that optimization of TCO layer thickness and replacement of conventional ITO with highly transparent IO:H can lead to an absolute efficiency increase of about 1%. Finally, a practical assessment of the efficiency potential for the 4T perovskite/c-Si tandem mini-module is carried out, indicating that with a relatively simple 4T tandem module structure the efficiency of a single-junction c-Si mini-module (19.3%) can be improved by absolute 4.5%.Photovoltaic Materials and Device
    corecore