27 research outputs found

    The RNA m6A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence.

    Get PDF
    YTHDF2 binds and destabilizes N6-methyladenosine (m6A)-modified mRNA. The extent to which this branch of m6A RNA-regulatory pathway functions in vivo and contributes to mammalian development remains unknown. Here we find that YTHDF2 deficiency is partially permissive in mice and results in female-specific infertility. Using conditional mutagenesis, we demonstrate that YTHDF2 is autonomously required within the germline to produce MII oocytes that are competent to sustain early zygotic development. Oocyte maturation is associated with a wave of maternal RNA degradation, and the resulting relative changes to the MII transcriptome are integral to oocyte quality. The loss of YTHDF2 results in the failure to regulate transcript dosage of a cohort of genes during oocyte maturation, with enrichment observed for the YTHDF2-binding consensus and evidence of m6A in these upregulated genes. In summary, the m6A-reader YTHDF2 is an intrinsic determinant of mammalian oocyte competence and early zygotic development

    The miR-144/451 locus is required for erythroid homeostasis.

    Get PDF
    The process of erythropoiesis must be efficient and robust to supply the organism with red bloods cells both under condition of homeostasis and stress. The microRNA (miRNA) pathway was recently shown to regulate erythroid development. Here, we show that expression of the locus encoding miR-144 and miR-451 is strictly dependent on Argonaute 2 and is required for erythroid homeostasis. Mice deficient for the miR-144/451 cluster display a cell autonomous impairment of late erythroblast maturation, resulting in erythroid hyperplasia, splenomegaly, and a mild anemia. Analysis of gene expression profiles from wild-type and miR-144/451-deficient erythroblasts revealed that the miR-144/451 cluster acts as a "tuner" of gene expression, influencing the expression of many genes. MiR-451 imparts a greater impact on target gene expression than miR-144. Accordingly, mice deficient in miR-451 alone exhibited a phenotype indistinguishable from miR-144/451-deficient mice. Thus, the miR-144/451 cluster tunes gene expression to impart a robustness to erythropoiesis that is critical under conditions of stress

    TEX15 is an essential executor of MIWI2-directed transposon DNA methylation and silencing.

    Get PDF
    The PIWI protein MIWI2 and its associated PIWI-interacting RNAs (piRNAs) instruct DNA methylation of young active transposable elements (TEs) in the male germline. piRNAs are proposed to recruit MIWI2 to the transcriptionally active TE loci by base pairing to nascent transcripts, however the downstream mechanisms and effector proteins utilized by MIWI2 in directing de novo TE methylation remain incompletely understood. Here, we show that MIWI2 associates with TEX15 in foetal gonocytes. TEX15 is predominantly a nuclear protein that is not required for piRNA biogenesis but is essential for piRNA-directed TE de novo methylation and silencing. In summary, TEX15 is an essential executor of mammalian piRNA-directed DNA methylation

    Terminal uridylyltransferases target RNA viruses as part of the innate immune system.

    Get PDF
    RNA viruses are a major threat to animals and plants. RNA interference (RNAi) and the interferon response provide innate antiviral defense against RNA viruses. Here, we performed a large-scale screen using Caenorhabditis elegans and its natural pathogen the Orsay virus (OrV), and we identified cde-1 as important for antiviral defense. CDE-1 is a homolog of the mammalian TUT4 and TUT7 terminal uridylyltransferases (collectively called TUT4(7)); its catalytic activity is required for its antiviral function. CDE-1 uridylates the 3' end of the OrV RNA genome and promotes its degradation in a manner independent of the RNAi pathway. Likewise, TUT4(7) enzymes uridylate influenza A virus (IAV) mRNAs in mammalian cells. Deletion of TUT4(7) leads to increased IAV mRNA and protein levels. Collectively, these data implicate 3'-terminal uridylation of viral RNAs as a conserved antiviral defense mechanism.CRUK, The Wellcome Trust & ER

    NANOS2 is a sequence-specific mRNA-binding protein that promotes transcript degradation in spermatogonial stem cells

    Get PDF
    Summary: Spermatogonial stem cells (SSCs) sustain spermatogenesis and fertility throughout adult male life. The conserved RNA-binding protein NANOS2 is essential for the maintenance of SSCs, but its targets and mechanisms of function are not fully understood. Here, we generated a fully functional epitope-tagged Nanos2 mouse allele and applied the highly stringent cross-linking and analysis of cDNAs to define NANOS2 RNA occupancy in SSC lines. NANOS2 recognizes the AUKAAWU consensus motif, mostly found in the 3′ untranslated region of defined messenger RNAs (mRNAs). We find that NANOS2 is a regulator of key signaling and metabolic pathways whose dosage or activity are known to be critical for SSC maintenance. NANOS2 interacts with components of CCR4-NOT deadenylase complex in SSC lines, and consequently, NANOS2 binding reduces the half-lives of target transcripts. In summary, NANOS2 contributes to SSC maintenance through the regulation of target mRNA stability and key self-renewal pathways

    Structural and functional basis of mammalian microRNA biogenesis by Dicer

    Get PDF
    MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer’s DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer⋅miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways

    Transposon-driven transcription is a conserved feature of vertebrate spermatogenesis and transcript evolution.

    Get PDF
    Spermatogenesis is associated with major and unique changes to chromosomes and chromatin. Here, we sought to understand the impact of these changes on spermatogenic transcriptomes. We show that long terminal repeats (LTRs) of specific mouse endogenous retroviruses (ERVs) drive the expression of many long non-coding transcripts (lncRNA). This process occurs post-mitotically predominantly in spermatocytes and round spermatids. We demonstrate that this transposon-driven lncRNA expression is a conserved feature of vertebrate spermatogenesis. We propose that transposon promoters are a mechanism by which the genome can explore novel transcriptional substrates, increasing evolutionary plasticity and allowing for the genesis of novel coding and non-coding genes. Accordingly, we show that a small fraction of these novel ERV-driven transcripts encode short open reading frames that produce detectable peptides. Finally, we find that distinct ERV elements from the same subfamilies act as differentially activated promoters in a tissue-specific context. In summary, we demonstrate that LTRs can act as tissue-specific promoters and contribute to post-mitotic spermatogenic transcriptome diversity

    Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 Loci

    Get PDF
    Male fertility requires the continuous production of high quality motile spermatozoa in abundance. Alterations in all three metrics cause oligoasthenoteratozoospermia, the leading cause of human sub/infertility. Post-mitotic spermatogenesis inclusive of several meiotic stages and spermiogenesis (terminal spermatozoa differentiation) are transcriptionally inert, indicating the potential importance for the post-transcriptional microRNA (miRNA) gene-silencing pathway therein. We found the expression of miRNA generating enzyme Dicer within spermatogenesis peaks in meiosis with critical functions in spermatogenesis. In an expression screen we identified two miRNA loci of the miR-34 family (miR-34b/c and miR-449) that are specifically and highly expressed in post-mitotic male germ cells. A reduction in several miRNAs inclusive of miR-34b/c in spermatozoa has been causally associated with reduced fertility in humans. We found that deletion of both miR34b/c and miR-449 loci resulted in oligoasthenoteratozoospermia in mice. MiR-34bc/449-deficiency impairs both meiosis and the final stages of spermatozoa maturation. Analysis of miR-34bc-/-;449-/- pachytene spermatocytes revealed a small cohort of genes deregulated that were highly enriched for miR-34 family target genes. Our results identify the miR-34 family as the first functionally important miRNAs for spermatogenesis whose deregulation is causal to oligoasthenoteratozoospermia and infertility
    corecore