49 research outputs found

    Non-motor symptom burden in patients with Parkinson's disease with impulse control disorders and compulsive behaviours : results from the COPPADIS cohort

    Get PDF
    The study was aimed at analysing the frequency of impulse control disorders (ICDs) and compulsive behaviours (CBs) in patients with Parkinson's disease (PD) and in control subjects (CS) as well as the relationship between ICDs/CBs and motor, nonmotor features and dopaminergic treatment in PD patients. Data came from COPPADIS-2015, an observational, descriptive, nationwide (Spain) study. We used the validated Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-Rating Scale (QUIP-RS) for ICD/CB screening. The association between demographic data and ICDs/CBs was analyzed in both groups. In PD, this relationship was evaluated using clinical features and treatment-related data. As result, 613 PD patients (mean age 62.47 ± 9.09 years, 59.87% men) and 179 CS (mean age 60.84 ± 8.33 years, 47.48% men) were included. ICDs and CBs were more frequent in PD (ICDs 12.7% vs. 1.6%, p < 0.001; CBs 7.18% vs. 1.67%, p = 0.01). PD patients had more frequent previous ICDs history, premorbid impulsive personality and antidepressant treatment (p < 0.05) compared with CS. In PD, patients with ICDs/CBs presented younger age at disease onset, more frequent history of previous ICDs and premorbid personality (p < 0.05), as well as higher comorbidity with nonmotor symptoms, including depression and poor quality of life. Treatment with dopamine agonists increased the risk of ICDs/CBs, being dose dependent (p < 0.05). As conclusions, ICDs and CBs were more frequent in patients with PD than in CS. More nonmotor symptoms were present in patients with PD who had ICDs/CBs compared with those without. Dopamine agonists have a prominent effect on ICDs/CBs, which could be influenced by dose

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Functioning of the rat circadian system is modified by light applied in critical postnatal days

    No full text
    Lighting conditions influence biological clocks. The present experiment was designed to test the presence of a critical window of days during the lactation stage of the rat in which light has a decisive role on the development of the circadian system. Rats were exposed to 4, 8, or 12 days of constant light (LL) during the first days of life. Their circadian rhythm was later studied under LL and constant darkness. The response to a light pulse was also examined. Results show that the greater the number of LL days during lactation, the stronger the rhythm under LL and the smaller the phase shift due to the light pulse. These responses are enhanced when rats are exposed to LL days around postnatal day 12. A mathematical model was built to explain the responses of the circadian system with respect to the timing of LL during lactation, and we deduced that between postnatal days 10 to 20there is a critical period of sensitivity to light; consequently, exposure to LL during this time modifies the circadian organization of the motor activity. </jats:p

    Design principles for phase-splitting behaviour of coupled cellular oscillators: clues from hamsters with ‘split’ circadian rhythms

    No full text
    Nonlinear interactions among coupled cellular oscillators are likely to underlie a variety of complex rhythmic behaviours. Here we consider the case of one such behaviour, a doubling of rhythm frequency caused by the spontaneous splitting of a population of synchronized oscillators into two subgroups each oscillating in anti-phase (phase-splitting). An example of biological phase-splitting is the frequency doubling of the circadian locomotor rhythm in hamsters housed in constant light, in which the pacemaker in the suprachiasmatic nucleus (SCN) is reconfigured with its left and right halves oscillating in anti-phase. We apply the theory of coupled phase oscillators to show that stable phase-splitting requires the presence of negative coupling terms, through delayed and/or inhibitory interactions. We also find that the inclusion of real biological constraints (that the SCN contains a finite number of non-identical noisy oscillators) implies the existence of an underlying non-uniform network architecture, in which the population of oscillators must interact through at least two types of connections. We propose that a key design principle for the frequency doubling of a population of biological oscillators is inhomogeneity of oscillator coupling
    corecore