2,193 research outputs found

    Bioethics and health law: the living will. Proposal to create a living will record in Europe

    Get PDF
    In this piece of work, we present a proposal to create a living will record in Europe that will allow people to have the same rights wherever they are. Therefore, this article will be studied from the bioethics and health law theory

    The implementation of a unit plan to increase the use of L2 and to avoid the L1 in an EFL classroom: CLT and Project-Based Learning in a 2nd year of E.S.O

    Get PDF
    El principal objetivo de este trabajo es la propuesta de una unidad didáctica que reduzca el uso de la lengua materna, en este caso el español, en las clases de inglés de secundaria. Tras la realizar la tare de observación durante las practicas, se encontró la necesidad de mejorar la fluidez de los estudiantes al hablar en inglés. Estos problemas, incluida una mala pronunciación, surgen a casa del abuso de la lengua materna en clase. Con esta unidad didáctica, los estudiantes se encuentran con actividades que les resultan interesantes y les mantienen motivados, algo muy importante para aumentar su interés en la asignatura. Por lo tanto, se van a emplear varias metodologías en esta unidad didáctica como el aprendizaje cooperativo y el aprendizaje basado en proyectos. Entonces, esta unidad se va a dividir en los diferentes en los diferentes pasos que se llevan a cabo durante el aprendizaje basado en proyectos y las actividades se van a basar en el enfoque comunicativo. El tema de la unidad y la gramática es de los libros del colegio.<br /

    Environmentally friendly synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/SnO2 nanocomposites

    Get PDF
    Conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is widely used for practical applications such as energy conversion and storage devices owing to its good flexibility, processability, high electrical conductivity, and superior optical transparency, among others. However, its hygroscopic character, short durability, and poor thermoelectric performance compared to inorganic counterparts has greatly limited its high-tech applications. In this work, PEDOT:PSS/SnO2 nanocomposites have been prepared via a simple, low cost, environmentally friendly method without the use of organic solvents or compatibilizing agents. Their morphology, thermal, thermoelectrical, optical, and mechanical properties have been characterized. Electron microscopy analysis revealed a uniform dispersion of the SnO2 nanoparticles, and the Raman spectra revealed the existence of very strong SnO2-PEDOT:PSS interactions. The stiffness and strength of the matrix gradually increased with increasing SnO2 content, up to 120% and 65%, respectively. Moreover, the nanocomposites showed superior thermal stability (as far as 70 degrees C), improved electrical conductivity (up to 140%), and higher Seebeck coefficient (about 80% increase) than neat PEDOT:PSS. On the other hand, hardly any change in optical transparency was observed. These sustainable nanocomposites show considerably improved performance compared to commercial PEDOT:PSS, and can be highly useful for applications in energy storage, flexible electronics, thermoelectric devices, and related fields.Comunidad de Madri

    Antibacterial nanocomposites based on thermosetting polymers derived from vegetable oils and metal oxide nanoparticles

    Get PDF
    Thermosetting polymers derived from vegetable oils (VOs) exhibit a wide range of outstanding properties that make them suitable for coatings, paints, adhesives, food packaging, and other industrial appliances. In addition, some of them show remarkable antimicrobial activity. Nonetheless, the antibacterial properties of these materials can be significantly improved via incorporation of very small amounts of metal oxide nanoparticles (MO-NPs) such as TiO2, ZnO, CuO, or Fe3O4. The antimicrobial efficiency of these NPs correlates with their structural properties like size, shape, and mainly on their concentration and degree of functionalization. Owing to their nanoscale dimensions, high specific surface area and tailorable surface chemistry, MO-NPs can discriminate bacterial cells from mammalian ones, offering long-term antibacterial action. MO-NPs provoke bacterial toxicity through generation of reactive oxygen species (ROS) that can target physical structures, metabolic paths, as well as DNA synthesis, thereby leading to cell decease. Furthermore, other modes of action-including lipid peroxidation, cell membrane lysis, redox reactions at the NP-cell interface, bacterial phagocytosis, etc.-have been reported. In this work, a brief description of current literature on the antimicrobial effect of VO-based thermosetting polymers incorporating MO-NPs is provided. Specifically, the preparation of the nanocomposites, their morphology, and antibacterial properties are comparatively discussed. A critical analysis of the current state-of-art on these nanomaterials improves our understanding to overcome antibiotic resistance and offers alternatives to struggle bacterial infections in public places.Universidad de Alcal

    Effect of graphene oxide on the properties of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)

    Get PDF
    The main shortcomings of polyhydroxybutyrate (PHB), which is a biodegradable and biocompatible polymer used for biomedical and food packaging applications, are its low thermal stability, poor impact resistance and lack of antibacterial activity. This issue can be improved by blending with other biodegradable polymers such as polyhydroxyhexanoate to form poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), which is a copolymer with better impact strength and lower melting point. However, PHBHHx shows reduced stiffness than PHB and poorer barrier properties against moisture and gases, which is a drawback for use in the food industry. In this regard, novel biodegradable PHBHHx/graphene oxide (GO) nanocomposites have been prepared via a simple, cheap and environmentally friendly solvent casting method to enhance the mechanical properties and antimicrobial activity. The morphology, mechanical, thermal, barrier and antibacterial properties of the nanocomposites were assessed via several characterization methods to show the enhancement in the biopolymer properties. The stiffness and strength of the biopolymer were enhanced up to 40% and 28%, respectively, related to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions. Moreover, the nanocomposites showed superior thermal stability (as far as 40 degrees C), lower water uptake (up to 70%) and better gas and vapour barrier properties (about 45 and 35% reduction) than neat PHBHHx. They also displayed strong biocide action against Gram positive and Gram negative bacteria. These bio-based nanocomposites with antimicrobial activity offer new perspectives for the replacement of traditional petroleum-based synthetic polymers currently used for food packaging.Comunidad de Madri

    Carbon-Based Polymer Nanocomposites for High-Performance Applications II

    Get PDF
    In the field of science and technology, carbon-based nanomaterials, such as carbon nanotubes (CNTs), graphene, graphene oxide, graphene quantum dots (GQDs), fullerenes, and so forth, are becoming very attractive for a wide number of applications [...

    Development of Graphene-Based Polymeric Nanocomposites: A Brief Overview

    Get PDF
    Graphene (G) and its derivatives, such as graphene oxide (GO) and reduced GO (rGO), have outstanding electrical, mechanical, thermal, optical, and electrochemical properties, owed to their 2D structure and large specific surface area. Further, their combination with polymers leads to novel nanocomposites with enhanced structural and functional properties due to synergistic effects. Such nanocomposites are becoming increasingly useful in a wide variety of fields ranging from biomedicine to the electronics and energy storage applications. In this review, a brief introduction on the aforementioned G derivatives is presented, and different strategies to develop polymeric nanocomposites are described. Several functionalization methods including covalent and non-covalent approaches to increase their interaction with polymers are summarized, and selected examples are provided. Further, applications of this type of nanocomposites in the field of energy are discussed, including lithium-ion batteries, supercapacitors, transparent conductive electrodes, counter electrodes of dye-sensitized solar cells, and active layers of organic solar cells. Finally, the challenges and future outlook for G-based polymeric nanocomposites are discussed.Comunidad de Madri

    Antibacterial Action of Nanoparticle loaded Nanocomposites Based on Graphene and its derivatives: a Mini-review

    Get PDF
    Bacterial infections constitute a severe problem in various areas of everyday life, causing pain and death, and adding enormous costs to healthcare worldwide. Besides, they cause important concerns in other industries, such as cloth, food packaging, and biomedicine, among others. Despite the intensive efforts of academics and researchers, there is lack of a general solutions to restrict bacterial growth. Among the various approaches, the use of antibacterial nanomaterials is a very promising way to fight the microorganisms due to their high specific surface area and intrinsic or chemically incorporated antibacterial action. Graphene, a 2D carbon-based ultra-thin biocompatible nanomaterial with excellent mechanical, thermal, and electrical properties, and its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO), are highly suitable candidates for restricting microbial infections. However, the mechanisms of antimicrobial action, their cytotoxicity, and other issues remain unclear. This mini-review provides select examples on the leading advances in the development of antimicrobial nanocomposites incorporating inorganic nanoparticles and graphene or its derivatives, with the aim of providing a better understanding of the antibacterial properties of graphene-based nanomaterials.Ministerio de EconomĂ­a y Competitividad (MINECO

    State of the art in the antibacterial and antiviral applications of carbon-based polymeric nanocomposites

    Get PDF
    The development of novel approaches to prevent bacterial infection is essential for enhancing everyday life. Carbon nanomaterials display exceptional optical, thermal, and mechanical properties combined with antibacterial ones, which make them suitable for diverse fields, including biomedical and food applications. Nonetheless, their practical applications as antimicrobial agents have not been fully explored yet, owing to their relatively poor dispersibility, expensiveness, and scalability changes. To solve these issues, they can be integrated within polymeric matrices, which also exhibit antimicrobial activity in some cases. This review describes the state of the art in the antibacterial applications of polymeric nanocomposites reinforced with 0D fullerenes, 1D carbon nanotubes (CNTs), and 2D graphene (G) and its derivatives such as graphene oxide (GO) and reduced graphene oxide (rGO). Given that a large number of such nanocomposites are available, only the most illustrative examples are described, and their mechanisms of antimicrobial activity are discussed. Finally, some applications of these antimicrobial polymeric nanocomposites are reviewed.(Comunidad de Madrid
    • …
    corecore