2 research outputs found

    Classification of antineoplastic drug-induced tissue damage: a Consensus of the Spanish Oncology Pharmacy Group

    No full text
    Objetivo: Realizar un consenso de expertos utilizando el método Delphi para la clasificación del potencial de daño tisular de los antineoplásicos que facilite la toma de decisiones ante una extravasación. Método: El panel de evaluadores estaba formado por siete farmacéuticos del grupo de trabajo de extravasaciones. Otro actuó como coordinador. Se revisó la probabilidad de daño tisular a partir de ocho documentos de referencia. Se clasificaron en cuatro categorías: vesicante, irritante de alto riesgo, irritante de bajo riesgo y no irritante. Se realizaron dos rondas; tras éstas los fármacos con consenso 85% y del 100%. Se analizaron de forma separada los fármacos con discordancias de clasificación entre los documentos consultados. Se utilizó el programa estadístico SPSS v23.0. Resultados: Se evaluaron 71 antineoplásicos. En la primera ronda la mediana del grado de consenso fue 100% (AIQ25-75: 71,4-100,0%) y en la segunda ronda 100% (AIQ25-75: 85,7-100,0%). El porcentaje de antineoplásicos con consenso ≥ 85,7% aumentó del 66,7% al 85,9% en la segunda ronda. Para los 30 antineoplásicos con discrepancias entre los documentos revisados, el grado de consenso aumentó del 71,4% (AIQ25-75: 57,1-87,7%) al 100% (AIQ25-75: 85,7-100,0%) en la segunda ronda. El porcentaje de antineoplásicos con concordancia ≥ 85,7% pasó del 40,0% al 76,7%. Cuatro antineoplásicos presentaron consenso 85%, y para el 74% de los antineoplásicos la concordancia fue del 100%, aportando una base sólida para las decisiones de manejo.Objective: To reach at an expert consensus, using the Delphi method, for classifying the tissue-damaging potential of antineoplastic drugs, in order to facilitate the decision-making process in the event of extravasations. Method: The panel of expert evaluators was made up of seven pharmacists belonging to the working group on extravasations. Other member served as coordinator. The likelihood of tissue damage was reviewed on the basis of eight reference documents. Four categories of drugs were established: vesicant (V); high risk irritant (HRI); low risk irritant (LRI) and non-irritant (NI). Two rounds of surveys were performed. The drugs with an agreement of less than 70% after the two rounds were discussed non-anonymously by the group. For each of the rounds the following was analysed: median of the degree of consensus and the interquartile range (IQR25-75), degree of agreement by tissue damage category, and percentage of antineoplastics reaching a degree of consensus of over 85% and of 100%. Drugs whose classification differed in the various reference documents were assessed separately. SPSS v23.0 statistical software was used. Results: Seventy-one antineoplastics were evaluated. In the first round, the median for degree of consensus was 100.0% (IQR25-75: 71.4- 100.0%). In the second round, the median was 100.0% (IQR25-75: 85.7- 100.0%). The percentage of antineoplastics with a consensus of 85.7% or above increased from 66.7% to 85.9% in the second round. For the 30 antineoplastics whose values differed in the reference documents, the degree of agreement increased from 71.4% (IQR25-75: 57.1-87.7%) to 100.0% (IQR25-75: 85.7-100.0%) in the second round. The percentage of antineoplastics with a consensus of 85.7% or above increased from 40.0% to 76.7%. Four antineoplastics had a degree of agreement of less than 70.0%. The final classification of drugs per category, was: 17 vesicants; 15 HRI; 13 LRI; and 26 NI. The final degree of consensus was 85.7% or above for 90.1% of antineoplastics, and 100.0% for 74.6% of the same. Conclusions: In this area of scarce evidence and high variability, the Delphi method allows for consensus in classifying tissue damage risk, thus making it easier to reach clinical decisions. In approximately 90% of the antineoplastics, the degree of consensus reached by the expert panel was 85% or above. In 74% of the antineoplastics, it was 100%. This provides solid ground for management decisions
    corecore