3 research outputs found

    Portion control tableware differentially impacts eating behaviour in women with and without overweight

    Get PDF
    Portion control tableware has been described as a potentially effective approach for weight management, however the mechanisms by which these tools work remain unknown. We explored the processes by which a portion control (calibrated) plate with visual stimuli for starch, protein and vegetable amounts modulates food intake, satiety and meal eating behaviour. Sixty-five women (34 with overweight/obesity) participated in a counterbalanced cross-over trial in the laboratory, where they self-served and ate a hot meal including rice, meatballs and vegetables, once with a calibrated plate and once with a conventional (control) plate. A subsample of 31 women provided blood samples to measure the cephalic phase response to the meal. Effects of plate type were tested through linear mixed-effect models. Meal portion sizes (mean ± SD) were smaller for the calibrated compared with the control plate (served: 296 ± 69 vs 317 ± 78 g; consumed: 287 ± 71 vs 309 ± 79 g respectively), especially consumed rice (69 ± 24 vs 88 ± 30 g) (p < 0.05 for all comparisons). The calibrated plate significantly reduced bite size (3.4 ± 1.0 vs 3.7 ± 1.0 g; p < 0.01) in all women and eating rate (32.9 ± 9.5 vs 33.7 ± 9.2 g/min; p < 0.05), in lean women. Despite this, some women compensated for the reduced intake over the 8 h following the meal. Pancreatic polypeptide and ghrelin levels increased post-prandially with the calibrated plate but changes were not robust. Plate type had no influence on insulin, glucose levels, or memory for portion size. Meal size was reduced by a portion control plate with visual stimuli for appropriate amounts of starch, protein and vegetables, potentially because of the reduced self-served portion size and the resulting reduced bite size. Sustained effects may require the continued use of the plate for long-term impact

    Portion control tableware differentially impacts eating behaviour in women with and without overweight

    No full text
    Portion control tableware has been described as a potentially effective approach for weight management, however the mechanisms by which these tools work remain unknown. We explored the processes by which a portion control (calibrated) plate with visual stimuli for starch, protein and vegetable amounts modulates food intake, satiety and meal eating behaviour. Sixty-five women (34 with overweight/obesity) participated in a counterbalanced cross-over trial in the laboratory, where they self-served and ate a hot meal including rice, meatballs and vegetables, once with a calibrated plate and once with a conventional (control) plate. A subsample of 31 women provided blood samples to measure the cephalic phase response to the meal. Effects of plate type were tested through linear mixed-effect models. Meal portion sizes (mean ± SD) were smaller for the calibrated compared with the control plate (served: 296 ± 69 vs 317 ± 78 g; consumed: 287 ± 71 vs 309 ± 79 g respectively), especially consumed rice (69 ± 24 vs 88 ± 30 g) (p < 0.05 for all comparisons). The calibrated plate significantly reduced bite size (3.4 ± 1.0 vs 3.7 ± 1.0 g; p < 0.01) in all women and eating rate (32.9 ± 9.5 vs 33.7 ± 9.2 g/min; p < 0.05), in lean women. Despite this, some women compensated for the reduced intake over the 8 h following the meal. Pancreatic polypeptide and ghrelin levels increased post-prandially with the calibrated plate but changes were not robust. Plate type had no influence on insulin, glucose levels, or memory for portion size. Meal size was reduced by a portion control plate with visual stimuli for appropriate amounts of starch, protein and vegetables, potentially because of the reduced self-served portion size and the resulting reduced bite size. Sustained effects may require the continued use of the plate for long-term impact

    Flower Development

    No full text
    Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies
    corecore