4 research outputs found

    Engineering Graph-Based Models for Dynamic Timetable Information Systems

    Get PDF
    Many efforts have been done in the last years to model public transport timetables in order to find optimal routes. The proposed models can be classified into two types: those representing the timetable as an array, and those representing it as a graph. The array-based models have been shown to be very effective in terms of query time, while the graph-based models usually answer queries by computing shortest paths, and hence they are suitable to be used in combination with speed-up techniques developed for road networks. In this paper, we focus on the dynamic behavior of graph-based models considering the case where transportation systems are subject to delays with respect to the given timetable. We make three contributions: (i) we give a simplified and optimized update routine for the well-known time-expanded model along with an engineered query algorithm; (ii) we propose a new graph-based model tailored for handling dynamic updates; (iii) we assess the effectiveness of the proposed models and algorithms by an experimental study, which shows that both models require negligible update time and a query time which is comparable to that required by some array-based models

    OASIcs, Volume 106, ATMOS 2022, Complete Volume

    No full text
    OASIcs, Volume 106, ATMOS 2022, Complete Volum

    Front Matter, Table of Contents, Preface, Conference Organization

    No full text
    Front Matter, Table of Contents, Preface, Conference Organizatio

    Digraph k-Coloring Games: From Theory to Practice

    Get PDF
    We study digraph k-coloring games where agents are vertices of a directed unweighted graph and arcs represent agents\u27 mutual unidirectional idiosyncrasies or conflicts. Each agent can select one of k different colors, and her payoff in a given state is given by the number of outgoing neighbors with a different color. Such games model lots of strategic real-world scenarios and are related to several fundamental classes of anti-coordination games. Unfortunately, the problem of understanding whether an instance of the game admits a pure Nash equilibrium is NP-complete [Jeremy Kun et al., 2013]. Therefore, in the last few years a relevant research focus has been that of designing polynomial time algorithms able to compute approximate Nash equilibria, i.e., states in which no agent, changing her strategy, can improve her payoff by some bounded multiplicative factor. The only two known algorithms in this respect are those in [Raffaello Carosi et al., 2017]. While they provide theoretical guarantees, their practical performance over real-world instances so far has not been investigated. In this paper, under the further motivation of the lack of practical approximation algorithms for the problem, we experimentally evaluate the above algorithms with the conclusion that, while they were suitably designed for achieving a bounded worst case behavior, they generally have a poor performance. Therefore, we next focus on classical best-response dynamics, and show that, despite of the fact that they might not always converge, they are very effective in practice. In particular, we provide a strong empirical evidence that they outperform existing methods, since surprisingly they quickly converge to exact Nash equilibria in almost all instances arising in practice. This also shows that, while this class of games is known to not always possess pure Nash equilibria, in almost all cases such equilibria exist and can be efficiently computed, even in a distributed uncoordinated way by a decentralized interaction of the agents
    corecore