1,792 research outputs found

    The Massive End of the Stellar Mass Function

    Full text link
    We derive average flux corrections to the \texttt{Model} magnitudes of the Sloan Digital Sky Survey (SDSS) galaxies by stacking together mosaics of similar galaxies in bins of stellar mass and concentration. Extra flux is detected in the outer low surface brightness part of the galaxies, leading to corrections ranging from 0.05 to 0.32 mag for the highest stellar mass galaxies. We apply these corrections to the MPA-JHU (Max-Planck Institute for Astrophysics - John Hopkins University) stellar masses for a complete sample of half a million galaxies from the SDSS survey to derive a corrected galaxy stellar mass function at z=0.1z=0.1 in the stellar mass range 9.5<log(M/M)<12.09.5<\log(M_\ast/M_\odot)<12.0. We find that the flux corrections and the use of the MPA-JHU stellar masses have a significant impact on the massive end of the stellar mass function, making the slope significantly shallower than that estimated by Li \& White (2009), but steeper than derived by Bernardi et al. (2013). This corresponds to a mean comoving stellar mass density of galaxies with stellar masses log(M/M)11.0\log(M_\ast/M_\odot) \ge 11.0 that is a factor of 3.36 larger than the estimate by Li \& White (2009), but is 43\% smaller than reported by Bernardi et al. (2013).Comment: 11 pages, 8 figures, Accepted to MNRA

    Parametrizing the Stellar Haloes of Galaxies

    Full text link
    We study the stellar haloes of galaxies out to 70-100 kpc as a function of stellar mass and galaxy type by stacking aligned rr and gg band images from a sample of 45508 galaxies from SDSS DR9 in the redshift range 0.06z0.10.06\,\le\,z\,\le\,0.1 and in the mass range 1010.0M<M<1011.4M10^{10.0} M_{\odot} < M_{*} < 10^{11.4} M_{\odot}r. We derive surface brightness profiles to a depth of almost μr32magarcsec2\mu_r \sim 32 \,\mathrm{mag\,arcsec}^{-2}. We find that the ellipticity of the stellar halo is a function of galaxy stellar mass and that the haloes of high concentration (C>2.6C > 2.6) galaxies are more elliptical than those of low concentration (C<2.6C < 2.6) galaxies. The gg-rr colour profile of high concentration galaxies reveals that the gg-rr colour of the stellar population in the stellar halo is bluer than in the main galaxy, and the colour of the stellar halo is redder for higher mass galaxies. We further demonstrate that the full two-dimensional surface intensity distribution of our galaxy stacks can only be fit through multi-component S\'{e}rsic models. Using the fraction of light in the outer component of the models as a proxy for the fraction of accreted stellar light, we show that this fraction is a function of stellar mass and galaxy type. For high concentration galaxies, the fraction of accreted stellar light rises from 30%30\% to 70%70\% for galaxies in the stellar mass range from 1010.0M10^{10.0} M_{\odot} to 1011.4M10^{11.4} M_{\odot}. The fraction of accreted light is much smaller in low concentration systems, increasing from 2%2\% to 25%25\% over the same mass range. This work provides important constraints for the theoretical understanding of the formation of stellar haloes of galaxies.Comment: Submitted to MNRAS, 18 pages, 19 figure

    Two-Week versus Six-Month Sampling Interval in a Short-Term Natural History Study of Oral HPV Infection in an HIV-Positive Cohort

    Get PDF
    BACKGROUND: Oral HPV infections detected six-months apart were compared to those detected bi-weekly, in an HIV-positive cohort, during the intervening months to elucidate systematic biases introduced into natural history studies by sampling interval. METHODS: Fourteen consecutive oral rinse samples were collected every two weeks for six months from an HIV-positive cohort (n = 112) and evaluated for the presence of 37 HPV types. The cumulative probability of type-specific HPV detection at visits 1 through 14 was determined as a function of infection categorized at visits 1 and 14 as persistent, newly detected, cleared or absent. Transition models were used to evaluate the effect of HPV viral load (measured by RT-PCR for HPV 16, 18, 31, 33, 35) on infection persistence. RESULTS: The average point prevalence of oral HPV infection was similar at two-week and six-month sampling intervals (45% vs. 47%, p = 0.52), but cumulative prevalence was higher with the former (82% vs. 53%, p<0.001) as was the cumulative prevalence of type-specific infections (9.3% vs 3.8%, p<0.0001). Type-specific infections persistent under a six-month sampling interval had a high probability (0.93, 95%CI 0.83-0.98) of detection at 50% or more of the intervening visits and infections that were absent had a high probability (0.94, 95% CI 0.93-0.95) of no interval detection. The odds of detection at any visit significantly increased for each unit increase in HPV viral load at the previous visit. CONCLUSIONS: Six-month sampling is appropriate to model factors associated with type-specific oral HPV infection persistence but may misclassify HPV-exposed individuals as unexposed

    Testing equivalence of pure quantum states and graph states under SLOCC

    Full text link
    A set of necessary and sufficient conditions are derived for the equivalence of an arbitrary pure state and a graph state on n qubits under stochastic local operations and classical communication (SLOCC), using the stabilizer formalism. Because all stabilizer states are equivalent to a graph state by local unitary transformations, these conditions constitute a classical algorithm for the determination of SLOCC-equivalence of pure states and stabilizer states. This algorithm provides a distinct advantage over the direct solution of the SLOCC-equivalence condition for an unknown invertible local operator S, as it usually allows for easy detection of states that are not SLOCC-equivalent to graph states.Comment: 9 pages, to appear in International Journal of Quantum Information; Minor typos corrected, updated references

    Rubrics in Nursing Education

    Get PDF
    Evaluating assignments or course work is a challenging job for faculty of nursing. In order to avoid the dilemmas of evaluation, nurse educators use rubrics as an evaluation tool. In educational technology, rubric refers to „performance standard‟ for a student population. A rubric is defined as an assessment tool that lays out the set standards and criteria to assess a performance, assignment or behavior. The four essential components of a rubric are task description, scale of achievement, dimensions & description of dimensions. Various types of scoring rubrics are available. The type of rubric chosen for assessment depends on the task being evaluated and the needs of the assessor. Holistic rubrics, analytic rubrics, generic rubrics, specific rubrics are the different types of rubrics. In nursing education, rubrics has got wide range of applications such as to; assess clinical skills, grade assignments, evaluate clinical competency and analyze presentations. Rubrics helps to define "quality performance” and promote awareness on critical components in a performance. Rubrics not only act as an evaluation tool for instructors, but also act as a feedback proforma for students. Rubrics are vital tools that can be utilized to solve the problem of subjectivity in evaluation. Rubrics provide consistency in evaluation, reduces subjectivity and enhances objectivity
    corecore