1,934 research outputs found

    Pterodactyl: Control System Demonstrator Development for Integrated Control Design of a Mechanically Deployed Entry Vehicle

    Get PDF
    The NASA-funded Pterodactyl project is a design, test, and build capability to (i) advance the current state of the art for Deployable Entry Vehicle (DEV) guidance and control (G&C), and (ii) determine the feasibility of control system integration for various entry vehicle types including those without aeroshells. This capability is currently being used to develop control systems for one such unconventional entry vehicle, the Lifting Nano-ADEPT (LNA) vehicle. ADEPT offers the possibility of integrating control systems directly onto the mechanically deployed structure and building hardware demonstrators will help assess integration and design challenges. Control systems based on aerodynamic control surfaces, mass movement, and reaction control systems (RCS) are currently being investigated for a down-select to the most suitable control architecture for the LNA.To that effect, in this submission, we detail the efforts of the Pterodactyl project to develop a series of hardware demonstrators for the different LNA control systems. Rapid prototypes, for a set of quarter- model or eighth-model vehicle segments, will be developed for all three architectures to validate mechanical design assumptions, and hardware-in-the-loop (HIWL) control approaches. A ground test control system demonstrator will be designed and built after the trade study is complete. The industrial-grade demonstrator will be designed so that it can be incorporated into a HWIL simulation to further validate the findings of the initial trade study. The HWIL simulation will leverage the iPAS environment developed at NASA's Johnson Space Center which facilitates integration testing to support technology maturation and risk reduction, necessary elements for the hardware demonstration development detailed in this paper

    Pterodactyl: Control Architectures Development for Integrated Control Design of a Mechanically Deployed Entry Vehicle

    Get PDF
    The need to return high mass payloads is driving the development of a new class of vehicles, Deployable Entry Vehicles (DEV) for which feasible and optimized control architectures have not been developed. The Pterodactyl project, seeks to advance the current state-of-the-art for entry vehicles by developing a design, test, and build capability for DEVs that can be applied to various entry vehicle configurations. This paper details the efforts on the NASA-funded Pterodactyl project to investigate multiple control techniques for the Lifting Nano-ADEPT (LNA) DEV. We design and implement multiple control architectures on the LNA and evaluate their performance in achieving varying guidance commands during entry.First we present an overview of DEVs and the Lifting Nano-ADEPT (LNA), along with the physical LNA configuration that influences the different control designs. Existing state-of-the-art for entry vehicle control is primarily propulsive as reaction control systems (RCS) are widely employed. In this work, we analyze the feasibility of using both propulsive control systems such as RCS to generate moments, and non-propulsive control systems such as aerodynamic control surfaces and internal moving mass actuations to shift the LNA center of gravity and generate moments. For these diverse control systems, we design different multi-input multi-output (MIMO) state-feedback integral controllers based on linear quadratic regulator (LQR) optimal control methods. The control variables calculated by the controllers vary, depending on the control system being utilized and the outputs to track for the controller are either the (i) bank angle or the (ii) angle of attack and sideslip angle as determined by the desired guidance trajectory. The LQR control design technique allows the relative allocation of the control variables through the choice of the weighting matrices in the cost index. Thus, it is easy to (i) specify which and how much of a control variable to use, and (ii) utilize one control design for different control architectures by simply modifying the choice of the weighting matrices.By providing a comparative analysis of multiple control systems, configurations, and performance, this paper and the Pterodactyl project as a whole will help entry vehicle system designers and control systems engineers determine suitable control architectures for integration with DEVs and other entry vehicle types

    Degree Distribution of Competition-Induced Preferential Attachment Graphs

    Full text link
    We introduce a family of one-dimensional geometric growth models, constructed iteratively by locally optimizing the tradeoffs between two competing metrics, and show that this family is equivalent to a family of preferential attachment random graph models with upper cutoffs. This is the first explanation of how preferential attachment can arise from a more basic underlying mechanism of local competition. We rigorously determine the degree distribution for the family of random graph models, showing that it obeys a power law up to a finite threshold and decays exponentially above this threshold. We also rigorously analyze a generalized version of our graph process, with two natural parameters, one corresponding to the cutoff and the other a ``fertility'' parameter. We prove that the general model has a power-law degree distribution up to a cutoff, and establish monotonicity of the power as a function of the two parameters. Limiting cases of the general model include the standard preferential attachment model without cutoff and the uniform attachment model.Comment: 24 pages, one figure. To appear in the journal: Combinatorics, Probability and Computing. Note, this is a long version, with complete proofs, of the paper "Competition-Induced Preferential Attachment" (cond-mat/0402268

    Pterodactyl: Development and Comparison of Control Architectures for a Mechanically Deployed Entry Vehicle

    Get PDF
    The Pterodactyl project, seeks to advance the current state-of-the-art for entry vehicles by developing novel guidance and control technologies for Deployable Entry Vehicles (DEVs) that can be applied to various entry vehicle configurations. This paper details the efforts on the NASA-funded Pterodactyl project to investigate and implement multiple control techniques for an asymmetric mechanical DEV. We design multiple control architectures for a Pterodactyl Baseline Vehicle (PBV) and evaluate their performance in achieving varying guidance commands during entry. The control architectures studied are (i) propulsive control systems such as reaction control systems and (ii) non-propulsive control systems such as aerodynamic control surfaces and internal moving masses. For each system, state-feedback integral controllers based on linear quadratic regulator (LQR) optimal control methods are designed to track guidance commands of either (i) bank angle or (ii) angle of attack and sideslip angle as determined by the desired guidance trajectory. All control systems are compared for a lunar return reference mission and by providing a comparative analysis of these systems, configurations, and performance, the efforts detailed in this paper and the Pterodactyl project as a whole will help entry vehicle system designers determine suitable control architectures for integration with DEVs and other entry vehicle types

    Orion Absolute Navigation System Progress and Challenges

    Get PDF
    The Orion spacecraft is being designed as NASA's next-generation exploration vehicle for crewed missions beyond Low-Earth Orbit. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudorange and deltarange, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, pad alignment, cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated

    Tuning and Robustness Analysis for the Orion Absolute Navigation System

    Get PDF
    The Orion Multi-Purpose Crew Vehicle (MPCV) is currently under development as NASA's next-generation spacecraft for exploration missions beyond Low Earth Orbit. The MPCV is set to perform an orbital test flight, termed Exploration Flight Test 1 (EFT-1), some time in late 2014. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to show the efforts made to-date in tuning the filter for the EFT-1 mission and instilling appropriate robustness into the system to meet the requirements of manned space ight. Filter performance is affected by many factors: data rates, sensor measurement errors, tuning, and others. This paper focuses mainly on the error characterization and tuning portion. Traditional efforts at tuning a navigation filter have centered around the observation/measurement noise and Gaussian process noise of the Extended Kalman Filter. While the Orion MODE team must certainly address those factors, the team is also looking at residual edit thresholds and measurement underweighting as tuning tools. Tuning analysis is presented with open loop Monte-Carlo simulation results showing statistical errors bounded by the 3-sigma filter uncertainty covariance. The Orion filter design uses 24 Exponentially Correlated Random Variable (ECRV) parameters to estimate the accel/gyro misalignment and nonorthogonality. By design, the time constant and noise terms of these ECRV parameters were set to manufacturer specifications and not used as tuning parameters. They are included in the filter as a more analytically correct method of modeling uncertainties than ad-hoc tuning of the process noise. Tuning is explored for the powered-flight ascent phase, where measurements are scarce and unmodelled vehicle accelerations dominate. On orbit, there are important trade-off cases between process and measurement noise. On entry, there are considerations about trading performance accuracy for robustness. Process Noise is divided into powered flight and coasting ight and can be adjusted for each phase and mode of the Orion EFT-1 mission. Measurement noise is used for the integrated velocity measurements during pad alignment. It is also used for Global Positioning System (GPS) pseudorange and delta- range measurements during the rest of the flight. The robustness effort has been focused on maintaining filter convergence and performance in the presence of unmodeled error sources. These include unmodeled forces on the vehicle and uncorrected errors on the sensor measurements. Orion uses a single-frequency, non-keyed GPS receiver, so the effects due to signal distortion in Earth's ionosphere and troposphere are present in the raw measurements. Results are presented showing the efforts to compensate for these errors as well as characterize the residual effect for measurement noise tuning. Another robustness tool in use is tuning the residual edit thresholds. The trade-off between noise tuning and edit thresholds is explored in the context of robustness to errors in dynamics models and sensor measurements. Measurement underweighting is also presented as a method of additional robustness when processing highly accurate measurements in the presence of large filter uncertainties

    Comparative Outcomes of Resident vs Attending Performed Surgery: A Systematic Review and Meta-Analysis

    Get PDF
    OBJECTIVE: To determine whether outcomes are different when surgery is performed by resident or attending surgeons, and which variables may affect outcomes. DESIGN: MEDLINE, EMBASE, and the Cochrane Library were searched from inception to May 2014 alongside the bibliographies of all included or relevant studies. Any study comparing outcomes from surgery performed by resident vs attending surgeons was eligible for inclusion. The main outcome measures were surgical complications (classified by Clavien-Dindo grade), death, operative time, and length of stay. Data were extracted independently by 2 authors and analyzed using the random-effects model. RESULTS: The final analysis included 182 eligible studies that enrolled 141 555 patients. Resident performed surgery took longer by 10.2 minutes (95% confidence interval (CI): 8.38-11.95), and had more Clavien-Dindo grade 1 (rate ratio = 1.14, 95% CI: 1.02-1.29) and grade 3a complications (rate ratio = 1.22, 95% CI: 1.04-1.44). Resident performed surgery resulted in fewer deaths (risk ratio = 0.83, 95% CI: 0.70-0.999) with a shorter length of stay of -0.49 days (95% CI: -0.77 to -0.21). Significant heterogeneity was present in 7 of 10 outcomes, which persisted during multiple subgroup analyses. CONCLUSIONS: Resident performed surgery appears to be safe in carefully selected patients. The significant amount of heterogeneity present in the study outcomes prevents generalizability of these results to specific clinical contexts

    Two-Week versus Six-Month Sampling Interval in a Short-Term Natural History Study of Oral HPV Infection in an HIV-Positive Cohort

    Get PDF
    BACKGROUND: Oral HPV infections detected six-months apart were compared to those detected bi-weekly, in an HIV-positive cohort, during the intervening months to elucidate systematic biases introduced into natural history studies by sampling interval. METHODS: Fourteen consecutive oral rinse samples were collected every two weeks for six months from an HIV-positive cohort (n = 112) and evaluated for the presence of 37 HPV types. The cumulative probability of type-specific HPV detection at visits 1 through 14 was determined as a function of infection categorized at visits 1 and 14 as persistent, newly detected, cleared or absent. Transition models were used to evaluate the effect of HPV viral load (measured by RT-PCR for HPV 16, 18, 31, 33, 35) on infection persistence. RESULTS: The average point prevalence of oral HPV infection was similar at two-week and six-month sampling intervals (45% vs. 47%, p = 0.52), but cumulative prevalence was higher with the former (82% vs. 53%, p<0.001) as was the cumulative prevalence of type-specific infections (9.3% vs 3.8%, p<0.0001). Type-specific infections persistent under a six-month sampling interval had a high probability (0.93, 95%CI 0.83-0.98) of detection at 50% or more of the intervening visits and infections that were absent had a high probability (0.94, 95% CI 0.93-0.95) of no interval detection. The odds of detection at any visit significantly increased for each unit increase in HPV viral load at the previous visit. CONCLUSIONS: Six-month sampling is appropriate to model factors associated with type-specific oral HPV infection persistence but may misclassify HPV-exposed individuals as unexposed
    • …
    corecore