11 research outputs found

    Versatile and enhanced tumour modeling in mice via somatic cell transduction

    Get PDF
    Genetically engineered mouse (GEM) models of cancer currently comprise the most accurate way to experimentally recapitulate the human disease in the laboratory. Given recent advances in genomics and genetic screens, however, as well as an increasing urgency for the translation of effective preclinical treatments into the clinic, there is a pressing need to make these models easier and more efficient to work with. Accordingly, we have developed a versatile lentivirus-based approach to induce tumours from somatic cells of GEMs, add or subtract gene expression and render the tumours imageable from a simple breeding stock. The vectors deliver a tamoxifen-inducible and self-inactivating Cre recombinase, conditional bioluminescent and fluorescent proteins and an shRNA component. Following the transduction of somatic cells, tumours are initiated by Cre-mediated recombination of the inherited floxed alleles. Self-inactivation of Cre expression switches on the expression of luciferase, thereby rendering the recombined cells and resulting tumours bioluminescent. We demonstrate proof of concept of this approach by inducing bioluminescent lung tumours in conditional Kras and p53 mice. We also show that a variant vector expressing shRNA alters tumour growth dynamics and the histological grade associated with the inherited genotype. This approach comprises a versatile means to induce imageable and spontaneous tumour burden in mice. The vectors can be readily customized at the bench to modify reporter readout or tumour phenotype without additional transgenic strain development or breeding. They should also be useful for inducing imageable tumours in organs other than the lung, provided that the inherited conditional genotype is sufficiently penetrant

    (13) C magnetic resonance spectroscopy measurements with hyperpolarized [1-(13) C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo.

    Get PDF
    PURPOSE: Dissolution dynamic nuclear polarization can increase the sensitivity of the (13) C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize (13) C-labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. METHODS: Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using (13) C MRS measurements of the conversion of hyperpolarized [1-(13) C] pyruvate to H(13) CO3-. RESULTS: Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two-fold increase in the H(13) CO3-/[1-(13) C] pyruvate signal ratio following intravenous injection of hyperpolarized [1-(13) C] pyruvate. CONCLUSION: We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized (13) C MRS. Magn Reson Med 76:391-401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.PD was in receipt of a studentship funded by CRUK and S.-S.T. a Yousef Jameel studentship. TBR was in receipt of an Intra-European Marie Curie (FP7-PEOPLE- 2009-IEF, Imaging Lymphoma) and Long-term EMBO (EMBO-ALT-1145-2009) fellowships and E.M.S. and I.M.R were recipients of fellowships from the European Union Seventh Framework Programme (FP7/2007-2013) under the Marie Curie Initial Training Network METAFLUX (project number 264780). E.M.S. also acknowledges the educational support of Programme for Advanced Medical Education from Calouste Gulbenkian Foundation, Champalimaud Foundation, Ministerio de Saude and Fundacao para a Ciencia e Tecnologia, Portugal. The work was supported by a CRUK Programme Grant (17242) to KMB. The polarizer and related materials were provided by GE-Healthcare.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/mrm.2587

    NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence.

    Get PDF
    Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture

    Impact of sheep grazing on the soil seed bank of a managed ephemeral wetland: implications for management

    No full text
    Copyright © 2007 CSIROJason Nicol, Sally Muston, Paula D’Santos, Bernard McCarthy and Sylvia Zukowsk

    MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter.

    No full text
    Non-invasive imaging of gene expression can be used to track implanted cells in vivo but often requires the addition of an exogenous contrast agent that may have limited tissue access. We show that the urea transporter (UT-B) can be used as a gene reporter, where reporter expression is detected using 1H MRI measurements of UT-B-mediated increases in plasma membrane water exchange. HEK cells transfected with the reporter showed an increased apparent water exchange rate (AXR), which increased in line with UT-B expression. AXR values measured in vivo, in UT-B-expressing HEK cell xenografts, were significantly higher (about twofold, P < 0.0001), compared with non-expressing controls. Fluorescence imaging of a red fluorescent protein (mStrawberry), co-expressed with UT-B showed that UT-B expression correlated in a linear fashion with AXR. Transduction of rat brain cells in situ with a lentiviral vector expressing UT-B resulted in about a twofold increase in AXR at the site of virus injection.This work was supported by a Cancer Research UK Programme grant to K.M.B. (17242) and by the CRUK-EPSRC Imaging Centre in Cambridge and Manchester (16465). F.S. is in receipt of funding from the Alexander von Humboldt Foundation in the form of a Feodor Lynen Research Fellowship
    corecore