7 research outputs found

    Flexible Model Interpretability through Natural Language Model Editing

    Full text link
    Model interpretability and model editing are crucial goals in the age of large language models. Interestingly, there exists a link between these two goals: if a method is able to systematically edit model behavior with regard to a human concept of interest, this editor method can help make internal representations more interpretable by pointing towards relevant representations and systematically manipulating them.Comment: Extended Abstract -- work in progress. BlackboxNLP202

    CAW-coref: Conjunction-Aware Word-level Coreference Resolution

    Full text link
    State-of-the-art coreference resolutions systems depend on multiple LLM calls per document and are thus prohibitively expensive for many use cases (e.g., information extraction with large corpora). The leading word-level coreference system (WL-coref) attains 96.6% of these SOTA systems' performance while being much more efficient. In this work, we identify a routine yet important failure case of WL-coref: dealing with conjoined mentions such as 'Tom and Mary'. We offer a simple yet effective solution that improves the performance on the OntoNotes test set by 0.9% F1, shrinking the gap between efficient word-level coreference resolution and expensive SOTA approaches by 34.6%. Our Conjunction-Aware Word-level coreference model (CAW-coref) and code is available at https://github.com/KarelDO/wl-coref.Comment: Accepted at CRAC 202

    BioDEX: Large-Scale Biomedical Adverse Drug Event Extraction for Real-World Pharmacovigilance

    Full text link
    Timely and accurate extraction of Adverse Drug Events (ADE) from biomedical literature is paramount for public safety, but involves slow and costly manual labor. We set out to improve drug safety monitoring (pharmacovigilance, PV) through the use of Natural Language Processing (NLP). We introduce BioDEX, a large-scale resource for Biomedical adverse Drug Event Extraction, rooted in the historical output of drug safety reporting in the U.S. BioDEX consists of 65k abstracts and 19k full-text biomedical papers with 256k associated document-level safety reports created by medical experts. The core features of these reports include the reported weight, age, and biological sex of a patient, a set of drugs taken by the patient, the drug dosages, the reactions experienced, and whether the reaction was life threatening. In this work, we consider the task of predicting the core information of the report given its originating paper. We estimate human performance to be 72.0% F1, whereas our best model achieves 62.3% F1, indicating significant headroom on this task. We also begin to explore ways in which these models could help professional PV reviewers. Our code and data are available: https://github.com/KarelDO/BioDEX.Comment: 28 page

    Frozen pretrained transformers for neural sign language translation

    No full text
    One of the major challenges in sign language translation from a sign language to a spoken language is the lack of parallel corpora. Recent works have achieved promising results on the RWTH-PHOENIX-Weather 2014T dataset, which consists of over eight thousand parallel sentences between German sign language and German. However, from the perspective of neural machine translation, this is still a tiny dataset. To improve the performance of models trained on small datasets, transfer learning can be used. While this has been previously applied in sign language translation for feature extraction, to the best of our knowledge, pretrained language models have not yet been investigated. We use pretrained BERT-base and mBART-50 models to initialize our sign language video to spoken language text translation model. To mitigate overfitting, we apply the frozen pretrained transformer technique: we freeze the majority of parameters during training. Using a pretrained BERT model, we outperform a baseline trained from scratch by 1 to 2 BLEU-4. Our results show that pretrained language models can be used to improve sign language translation performance and that the self-attention patterns in BERT transfer in zero-shot to the encoder and decoder of sign language translation models

    CEBaB: Estimating the Causal Effects of Real-World Concepts on NLP Model Behavior

    Full text link
    The increasing size and complexity of modern ML systems has improved their predictive capabilities but made their behavior harder to explain. Many techniques for model explanation have been developed in response, but we lack clear criteria for assessing these techniques. In this paper, we cast model explanation as the causal inference problem of estimating causal effects of real-world concepts on the output behavior of ML models given actual input data. We introduce CEBaB, a new benchmark dataset for assessing concept-based explanation methods in Natural Language Processing (NLP). CEBaB consists of short restaurant reviews with human-generated counterfactual reviews in which an aspect (food, noise, ambiance, service) of the dining experience was modified. Original and counterfactual reviews are annotated with multiply-validated sentiment ratings at the aspect-level and review-level. The rich structure of CEBaB allows us to go beyond input features to study the effects of abstract, real-world concepts on model behavior. We use CEBaB to compare the quality of a range of concept-based explanation methods covering different assumptions and conceptions of the problem, and we seek to establish natural metrics for comparative assessments of these methods
    corecore