646 research outputs found

    Neutrino self-energy in a magnetized medium in arbitrary ξ\xi-gauge

    Get PDF
    We calculate the one-loop neutrino self-energy in a magnetized plasma to all orders in the magnetic field. The calculation is done in a general gauge. We obtain the dispersion relation and effective potential for neutrinos in a CP-symmetric plasma under various conditions, and show that, while the self-energy depends on the gauge parameter ξ\xi, the dispersion relation and effective potential to leading order are independent of it.Comment: 13 pages, RevTeX, epsfig, axodra

    Thermal effects on the absorption of ultra-high energy neutrinos by the cosmic neutrino background

    Full text link
    We use the formalism of finite-temperature field theory to study the interactions of ultra-high energy (UHE) cosmic neutrinos with the background of relic neutrinos and to derive general expressions for the UHE neutrino transmission probability. This approach allows us to take into account the thermal effects introduced by the momentum distribution of the relic neutrinos. We compare our results with the approximate expressions existing in the literature and discuss the influence of thermal effects on the absorption dips in the context of favoured neutrino mass schemes, as well as in the case of clustered relic neutrinos.Comment: 3 pages, 2 figures. Prepared for the Proceedings of the 9th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2005), Zaragoza (Spain), September 10-14, 200

    UHE neutrino damping in a thermal gas of relic neutrinos

    Full text link
    We present a calculation of the damping of an ultra-energetic (UHE) cosmic neutrino travelling through the thermal gas of relic neutrinos, using the formalism of finite-temperature field theory. From the self-energy diagram due to Z exchange, we obtain the annihilation cross section for an UHE neutrino interacting with an antineutrino from the background. This method allows us to derive the full expressions for the UHE neutrino transmission probability, taking into account the momentum of relic neutrinos. We compare our results with the approximations in use in the literature. We discuss the effect of thermal motion on the shape of the absorption dips for different UHE neutrino fluxes as well as in the context of relic neutrino clustering. We find that for ratios of the neutrino mass to the relic background temperature 10210^2 or smaller, the thermal broadening of the absorption lines could significantly affect the determination of the neutrino mass and of the characteristics of the population of UHE sources.Comment: 18 pages, 6 figures. Typos corrected. More accurate treatment of the interaction with relic neutrino clusters. Accepted for publication in Astroparticle Physic
    corecore