research

UHE neutrino damping in a thermal gas of relic neutrinos

Abstract

We present a calculation of the damping of an ultra-energetic (UHE) cosmic neutrino travelling through the thermal gas of relic neutrinos, using the formalism of finite-temperature field theory. From the self-energy diagram due to Z exchange, we obtain the annihilation cross section for an UHE neutrino interacting with an antineutrino from the background. This method allows us to derive the full expressions for the UHE neutrino transmission probability, taking into account the momentum of relic neutrinos. We compare our results with the approximations in use in the literature. We discuss the effect of thermal motion on the shape of the absorption dips for different UHE neutrino fluxes as well as in the context of relic neutrino clustering. We find that for ratios of the neutrino mass to the relic background temperature 10210^2 or smaller, the thermal broadening of the absorption lines could significantly affect the determination of the neutrino mass and of the characteristics of the population of UHE sources.Comment: 18 pages, 6 figures. Typos corrected. More accurate treatment of the interaction with relic neutrino clusters. Accepted for publication in Astroparticle Physic

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019