48 research outputs found
ASSESSING PERFORMANCE IN FORENSIC HAIR EXAMINATION: A REVIEW
Forensic biological examination is a part of forensic science, which has the aims to identify biological matrix and stains on crime scenes or findings. Forensic biological examination is important for the identification of even the smallest biological samples and their attribution to a specific person, victim or suspect. During crime scene investigation hair is one of the biological samples that can be found and can lead the operators to identify the perpetrators. In fact, hair can be easily found on findings, both clothes and objects, near victims and/or in the area of the crime. The hairs functions of protection, sensing and thermal insulation make them strongly present in almost all human population, increasing the possibility to found them quite everywhere, also on crime scenes. Microscopic analysis of the human hairs can be used to make a comparative analysis on suspects, focus the attention on pretty well-known morphological characteristics such as: medulla; scales; cortex; cuticle and pigmentation. Furthermore, the bulb of human hair, found on crime scenes or on findings, can be used in forensic genetics examination to reach a DNA matching between hairs and suspect or victim. In fact, only within the bulb there are traces of nucleated cells that let the operators to extract DNA and carry out a genetic profile. The aim of this research is to cross-compare multiple knowledge from different research papers on forensic hair examination in order to assess the evolution of the study and technology in this field and for assess new perspective of research and forensic applications
Proteomic Analysis of Sera from Common Variable Immunodeficiency Patients Undergoing Replacement Intravenous Immunoglobulin Therapy
Common variable immunodeficiency is the most common form of symptomatic primary antibody failure in adults and children. Replacement immunoglobulin is the standard treatment of these patients. By using a differential proteomic approach based on 2D-DIGE, we examined serum samples from normal donors and from matched, naive, and immunoglobulin-treated patients. The results highlighted regulated expression of serum proteins in naive patients. Among the identified proteins, clusterin/ApoJ serum levels were lower in naive patients, compared to normal subjects. This finding was validated in a wider collection of samples from newly enrolled patients. The establishment of a cellular system, based on a human hepatocyte cell line HuH7, allowed to ascertain a potential role in the regulation of CLU gene expression by immunoglobulins
A new tool for touch-free patient registration for robot-assisted intracranial surgery: Application accuracy from a phantom study and a retrospective surgical series
OBJECTIVE The purpose of this study was to compare the accuracy of Neurolocate frameless registration system and frame-based registration for robotic stereoelectroencephalography (SEEG). METHODS The authors performed a 40-trajectory phantom laboratory study and a 127-trajectory retrospective analysis of a surgical series. The laboratory study was aimed at testing the noninferiority of the Neurolocate system. The analysis of the surgical series compared Neurolocate-based SEEG implantations with a frame-based historical control group. RESULTS The mean localization errors (LE) ± standard deviations (SD) for Neurolocate-based and frame-based trajectories were 0.67 ± 0.29 mm and 0.76 ± 0.34 mm, respectively, in the phantom study (p = 0.35). The median entry point LE was 0.59 mm (interquartile range [IQR] 0.25-0.88 mm) for Neurolocate-registration-based trajectories and 0.78 mm (IQR 0.49-1.08 mm) for frame-registration-based trajectories (p = 0.00002) in the clinical study. The median target point LE was 1.49 mm (IQR 1.06-2.4 mm) for Neurolocate-registration-based trajectories and 1.77 mm (IQR 1.25-2.5 mm) for frameregistration- based trajectories in the clinical study. All the surgical procedures were successful and uneventful. CONCLUSIONS The results of the phantom study demonstrate the noninferiority of Neurolocate frameless registration. The results of the retrospective surgical series analysis suggest that Neurolocate-based procedures can be more accurate than the frame-based ones. The safety profile of Neurolocate-based registration should be similar to that of frame-based registration. The Neurolocate system is comfortable, noninvasive, easy to use, and potentially faster than other registration devices