43 research outputs found

    Effect of the heralding detector properties on the conditional generation of single-photon states

    Get PDF
    Single-photons play an important role in emerging quantum technologies and information processing. An efficient generation technique consists in preparing such states via a conditional measurement on photon-number correlated beams: the detection of a single-photon on one of the beam can herald the generation of a single-photon state on the other one. Such scheme strongly depends on the heralding detector properties, such as its quantum efficiency, noise or photon-number resolution ability. These parameters affect the preparation rate and the fidelity of the generated state. After reviewing the theoretical description of optical detectors and conditional measurements, and how both are here connected, we evaluate the effects of these properties and compare two kind of devices, a conventional on/off detector and a two-channel detector with photon-number resolution ability

    Generalized approach for enabling multimode quantum optics

    Get PDF
    We develop a universal approach enabling the study of any multimode quantum optical system evolving under a quadratic Hamiltonian. Our strategy generalizes the standard symplectic analysis and permits the treatment of multimode systems even in situations where traditional theoretical methods cannot be applied. This enables the description and investigation of a broad variety of key-resources for experimental quantum optics, ranging from optical parametric oscillators, to silicon-based micro-ring resonator, as well as opto-mechanical systems

    Continuous-variable entanglement of two bright coherent states that never interacted

    Full text link
    We study continuous-variable entanglement of bright quantum states in a pair of evanescently coupled nonlinear χ(2)\chi^{(2)} waveguides operating in the regime of degenerate down-conversion. We consider the case where only the energy of the nonlinearly generated fields is exchanged between the waveguides while the pump fields stay independently guided in each original waveguide. We show that this device, when operated in the depletion regime, entangles the two non-interacting bright pump modes due to a nonlinear cascade effect. It is also shown that two-colour quadripartite entanglement can be produced when certain system parameters are appropriately set. This device works in the traveling-wave configuration, such that the generated quantum light shows a broad spectrum. The proposed device can be easily realized with current technology and therefore stands as a good candidate for a source of bipartite or multipartite entangled states for the emerging field of optical continuous-variable quantum information processing.Comment: 10 pages, 12 figure

    Witnessing trustworthy single-photon entanglement with local homodyne measurements

    Full text link
    Single-photon entangled states, i.e. states describing two optical paths sharing a single photon, constitute the simplest form of entanglement. Yet they provide a valuable resource in quantum information science. Specifically, they lie at the heart of quantum networks, as they can be used for quantum teleportation, swapped and purified with linear optics. The main drawback of such entanglement is the difficulty in measuring it. Here, we present and experimentally test an entanglement witness allowing one not only to say whether a given state is path-entangled but also that entanglement lies in the subspace where the optical paths are each filled with one photon at most, i.e. refers to single-photon entanglement. It uses local homodyning only and relies on no assumption about the Hilbert space dimension of the measured system. Our work provides a simple and trustful method for verifying the proper functioning of future quantum networks.Comment: published versio

    Minimum resources for versatile continuous variable entanglement in integrated nonlinear waveguides

    Full text link
    In a recent paper [Phys. Rev. A {\bf 96}, 053822 (2017)], we proposed a strategy to generate bipartite and quadripartite continuous-variable entanglement of bright quantum states based on degenerate down-conversion in a pair of evanescently coupled nonlinear χ(2)\chi^{(2)} waveguides. Here, we show that the resources needed for obtaining these features can be optimized by exploiting the regime of second harmonic generation: the combination of depletion and coupling among pump beams indeed supplies all necessary wavelengths and appropriate phase mismatch along propagation. Our device thus entangles the two fundamental classical input fields without the participation of any harmonic ancilla. Depending on the propagation distance, the generated harmonics are entangled in bright or vacuum modes. We also evidence two-color bipartite and quadripartite entanglement over the interacting modes. The proposed device represents a boost in continuous-variable integrated quantum optics since it enables a broad range of quantum effects in a very simple scheme, which optimizes the resources and can be easily realized with current technology.Comment: 8 pages, 8 figure
    corecore