1,000 research outputs found
Slamming analysis of skips in mine shafts: the effect of secondary stiffening in the guides
Previous investigations into the dynamics of skips in deep mine shafts have led to the identification of slamming as a phenomenon that results in exceptionally high forces in the shaft steelwork and conveyance. Slamming may occur when the rollers on the skip, that normally act on the guide, fail. Possible damage caused to the shaft steelwork, as a result of slamming, limits the hoisting speed of the skip. This study extends previous work by investigating the effect of secondary stiffening, due to axial tension effects as the guide deforms, on the slamming response of the skip. A mathematical model of a single slamming event is formulated and a numerical solution procedure presented. A number of computer simulations, including parametric studies, are presented. An important conclusion is that previous slamming models were shown to predict a reduced response when low axial compressive forces are present in the guides while predicting an increased response for high (near the buckling load) axial compressive forces. The inclusion of secondary stiffening; due to axial tension effects, thus represents a significant refinement of the slamming model
Matching small functions using centroid jitter and two beam position monitors
Matching to small beta functions is required to preserve emittance in plasma
accelerators. The plasma wake provides strong focusing fields, which typically
require beta functions on the mm-scale, comparable to those found in the final
focusing of a linear collider. Such beams can be time consuming to
experimentally produce and diagnose. We present a simple, fast, and noninvasive
method to measure Twiss parameters in a linac using two beam position monitors
only, relying on the similarity of the beam phase space and the jitter phase
space. By benchmarking against conventional quadrupole scans, the viability of
this technique was experimentally demonstrated at the FLASHForward
plasma-accelerator facility.Comment: 8 pages, 7 figure
Recommended from our members
Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone.
We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggests that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome
The restoration of Loch Leven, Scotland, UK
This paper reviews the progress made towards the restoration of Loch Leven, the largest lake in lowland Scotland, over the last 20 years. In particular, the importance of direct regulation and of setting water quality objectives and targets is examined. Various means of engaging with stakeholders and the general public are also considered. Success criteria and catchment management initiatives are described and briefly reviewed
Differential aging of median and ulnar sensory nerve parameters
Introduction: Nerve conduction velocity slows and amplitude declines with aging. Methods: Median and ulnar sensory nerves were tested at the annual meetings of the American Dental Association. Seven hundred four subjects had at least two observations. The rate of change in the nerve parameters was estimated while controlling for gender, age, change in hand temperature, baseline body mass index (BMI), and change in BMI. Results: Amplitudes of the median sensory nerve action potentials decreased by 0.58 μV per year, whereas conduction velocity decreased at a rate of 0.41 m/s per year. Corresponding values for the ulnar nerve were 0.89 μV and 0.29 m/s per year. The rates of change in amplitudes did not differ, but the median nerve demonstrated a more rapid loss of conduction velocity. Conclusions: The rate of change for the median conduction velocity was higher than previously reported. The rate of change of median conduction velocity was significantly greater than for the ulnar nerve. Muscle Nerve 45: 60–64, 2012Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89485/1/22233_ftp.pd
<i>In vitro - in vivo </i>relations for the parenteral liposomal formulation of Amphotericin B:A clinically relevant approach with PBPK modeling
In vitro release testing is a useful tool for the quality control of controlled release parenteral formulations, but in vitro release test conditions that reflect or are able to predict the in vivo performance are advantageous. Therefore, it is important to investigate the factors that could affect drug release from formulations and relate them to in vivo performance. In this study the effect of media composition including albumin presence, type of buffer and hydrodynamics on drug release were evaluated on a liposomal Amphotericin B formulation (Ambisome®). A physiologically based pharmacokinetic (PBPK) model was developed using plasma concentration profiles from healthy subjects, in order to investigate the impact of each variable from the in vitro release tests on the prediction of the in vivo performance. It was found that albumin presence was the most important factor for the release of Amphotericin B from Ambisome®; both hydrodynamics setups, coupled with the PBPK model, had comparable predictive ability for simulating in vivo plasma concentration profiles. The PBPK model was extrapolated to a hypothetical hypoalbuminaemic population and the Amphotericin B plasma concentration and its activity against fungal cells were simulated. Selected in vitro release tests for these controlled release parenteral formulations were able to predict the in vivo AmB exposure, and this PBPK driven approach to release test development could benefit development of such formulations.</p
Learning and digital inclusion: the ELAMP project
The Electronic Learning and Mobility Project (ELAMP) was a nationally funded project by the Department for Children, Schools and Families, which ran from 2004 to 2010. The main aim of ELAMP was to improve the education of Traveller children, particularly highly mobile learners. ELAMP focussed upon the use of mobile technology and distance learning to support, enhance and extend young Travellers’ educational and vocational opportunities. This article will reflect upon the learning and technological experiences and opportunities that the ELAMP project provided for Traveller children, young people and their families. In doing so it will critically consider the value of information technology in working with Traveller communities and advancing their educational opportunities. Reviewing ELAMP work will also demonstrate how the use of mobile technology can improve educational outcomes and Traveller families’ digital inclusion. Now that the project has ended, this article will question why we are not using what we learnt from ELAMP to move forward
- …