588 research outputs found

    The most powerful flaring activity from the NLSy1 PMN J0948+0022

    Get PDF
    We report on multifrequency observations performed during 2012 December–2013 August of the first narrow-line Seyfert 1 galaxy detected in γ-rays, PMN J0948+0022 (z = 0.5846). A γ-ray flare was observed by the Large Area Telescope on board Fermi during 2012 December–2013 January, reaching a daily peak flux in the 0.1–100 GeV energy range of (155 ± 31) × 10−8 ph cm−2 s−1 on 2013 January 1, corresponding to an apparent isotropic luminosity of ∼1.5 × 1048 erg s−1. The γ-ray flaring period triggered Swift and Very Energetic Radiation Imaging Telescope Array System (VERITAS) observations in addition to radio and optical monitoring by Owens Valley Radio Observatory, Monitoring Of Jets in Active galactic nuclei with VLBA Experiments, and Catalina Real-time Transient Survey. A strong flare was observed in optical, UV, and X-rays on 2012 December 30, quasi-simultaneously to the γ-ray flare, reaching a record flux for this source from optical to γ-rays. VERITAS observations at very high energy (E > 100 GeV) during 2013 January 6–17 resulted in an upper limit of F>0.2 TeV < 4.0 × 10−12 ph cm−2 s−1. We compared the spectral energy distribution (SED) of the flaring state in 2013 January with that of an intermediate state observed in 2011. The two SEDs, modelled as synchrotron emission and an external Compton scattering of seed photons from a dust torus, can be modelled by changing both the electron distribution parameters and the magnetic field

    Uncovering the host galaxy of the γ\gamma-ray-emitting narrow-line Seyfert 1 galaxy FBQS J1644+2619

    Get PDF
    The discovery of γ\gamma-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1) galaxies has questioned the need for large black hole masses (> 108^8 M⊙_{\odot}) to launch relativistic jets. We present near-infrared data of the γ\gamma-ray-emitting NLSy1 FBQS J1644+2619 that were collected using the camera CIRCE (Canarias InfraRed Camera Experiment) at the 10.4-m Gran Telescopio Canarias to investigate the structural properties of its host galaxy and to infer the black hole mass. The 2D surface brightness profile is modelled by the combination of a nuclear and a bulge component with a S\'ersic profile with index nn = 3.7, indicative of an elliptical galaxy. The structural parameters of the host are consistent with the correlations of effective radius and surface brightness against absolute magnitude measured for elliptical galaxies. From the bulge luminosity, we estimated a black hole mass of (2.1±\pm0.2) ×\times108^8 M⊙_{\odot}, consistent with the values characterizing radio-loud active galactic nuclei.Comment: 5 pages, 3 figures, 1 table. Monthly Notices of the Royal Astronomical Society Letter, Vol. 469, L11-L1

    The connection between radio and high energy emission in black hole powered systems in the SKA era

    Get PDF
    Strong evidence exists for a highly significant correlation between the radio flux density and gamma-ray energy flux in blazars revealed by Fermi. However, there are central issues that need to be clarified in this field: what are the counterparts of the about 30% of gamma-ray sources that are as yet unidentified? Are they just blazars in disguise or they are something more exotic, possibly associated with dark matter? How would they fit in the radio-gamma ray connection studied so far? With their superb sensitivity, SKA1-MID and SKA1-SUR will help to resolve all of these questions. Even more, while the radio-MeV/GeV connection has been firmly established, a radio-VHE connection has been entirely elusive so far. The advent of CTA in the next few years and the expected CTA-SKA1 synergy will offer the chance to explore this connection, even more intriguing as it involves the opposite ends of the electromagnetic spectrum and the acceleration of particles up to the highest energies. We are already preparing to address these questions by exploiting data from the various SKA pathfinders and precursors. We have obtained 18 cm European VLBI Network observations of E>10 GeV sources, with a detection rate of 83%. Moreover, we are cross correlating the Fermi catalogs with the MWA commissioning survey: when faint gamma-ray sources are considered, pure positional coincidence is not significant enough for selecting counterparts and we need an additional physical criterion to pinpoint the right object. It can be radio spectral index, variability, polarization, or compactness, needing high angular resolution in SKA1-MID; timing studies can also reveal pulsars, which are often found from dedicated searches of unidentified gamma-ray sources. SKA will be the ideal instrument for investigating these characteristics in conjunction with CTA. (abridged)Comment: 12 pages, to be published in the proceedings of "Advancing Astrophysics with the Square Kilometre Array", PoS(AASKA14)15
    • …
    corecore