50 research outputs found

    EGFR-specific T cell frequencies correlate with EGFR expression in head and neck squamous cell carcinoma

    Get PDF
    Background\ud In head and neck squamous cell carcinoma (HNSCC), expression levels of the epidermal growth factor receptor (EGFR) correlate with poor prognosis and decreased survival rates. As the mechanisms responsible for cellular immune response to EGFR in vivo remain unclear, the frequency and function of EGFR-specific cytotoxic T cells (CTL) was determined in HNSCC patients.\ud \ud Methods\ud The frequency of CTL specific for the HLA-A2.1-restricted EGFR-derived YLN peptide (YLNTVQPTCV) and KLF peptide (KLFGTSGQKT) was determined in 16 HLA-A2.1+ HNSCC patients and 16 healthy HLA-A2.1+ individuals (NC) by multicolor flow cytometry. Patients' results were correlated to EGFR expression obtained by immunohistochemistry in corresponding tumor sections. Proliferation and anti-tumor activity of peptide-specific CTL was demonstrated by in vitro stimulation with dendritic cells pulsed with the peptides.\ud \ud Results\ud Frequency of EGFR-specific CTL correlated significantly with EGFR expression in tumor sections (p = 0.02, r2 = 0.6). Patients with elevated EGFR scores (> 7) had a significantly higher frequency of EGFR-specific CTL than NC and patients with low EGFR scores (< 7). EGFR-specific CTL from cancer patients were expanded ex vivo and produced IFN-γ upon recognition of EGFR+ target cells.\ud \ud Conclusion\ud EGFR expressed on HNSCC cells induces a specific immune response in vivo. Strategies for expansion of EGFR-specific CTL may be important for future immunotherapy of HNSCC patients

    Analysis of Mycobacterium tuberculosis-Specific CD8 T-Cells in Patients with Active Tuberculosis and in Individuals with Latent Infection

    Get PDF
    CD8 T-cells contribute to control of Mycobacterium tuberculosis infection, but little is known about the quality of the CD8 T-cell response in subjects with latent infection and in patients with active tuberculosis disease. CD8 T-cells recognizing epitopes from 6 different proteins of Mycobacterium tuberculosis were detected by tetramer staining. Intracellular cytokines staining for specific production of IFN-γ and IL-2 was performed, complemented by phenotyping of memory markers on antigen-specific CD8 T-cells. The ex-vivo frequencies of tetramer-specific CD8 T-cells in tuberculous patients before therapy were lower than in subjects with latent infection, but increased at four months after therapy to comparable percentages detected in subjects with latent infection. The majority of CD8 T-cells from subjects with latent infection expressed a terminally-differentiated phenotype (CD45RA+CCR7−). In contrast, tuberculous patients had only 35% of antigen-specific CD8 T-cells expressing this phenotype, while containing higher proportions of cells with an effector memory- and a central memory-like phenotype, and which did not change significantly after therapy. CD8 T-cells from subjects with latent infection showed a codominance of IL-2+/IFN-γ+ and IL-2−/IFN-γ+ T-cell populations; interestingly, only the IL-2+/IFN-γ+ population was reduced or absent in tuberculous patients, highly suggestive of a restricted functional profile of Mycobacterium tuberculosis-specific CD8 T-cells during active disease. These results suggest distinct Mycobacterium tuberculosis specific CD8 T-cell phenotypic and functional signatures between subjects which control infection (subjects with latent infection) and those who do not (patients with active disease)

    The Micro-Complement Fixation Test

    No full text

    Genetics of RhL-A system of rhesus monkeys

    No full text
    corecore