3,560 research outputs found
Analysis of navigation pattern in the sport of rowing
The effect of weather and environmental conditions on sports has been extensively studied over the last few years (Pezzoli et al., 2010). Based upon the studies of Lobozewicz (1981) and of Kay and Vamplew (2002), Pezzoli and Cristofori (2008) have studied the impact of some specific environmental parameters over different sports using a particular impact index divided into five classes. This analysis clearly shows that most of the outdoor sport activities are strongly influenced by the variation of meteorological parameters. However the impact of meteorological conditions on outdoor sport activities has not yet been extensively studied. The aim of this research is to show that an accurate assessment of wind and wave parameters enables decisive improvements in both training and race strategy planning. Furthermore this analysis provide a very innovative working method for the applied sport research. The work has been based on in-situ measurements of both environmental and performance parameters (wind direction, wind velocity, boat speed and stroke rate) made over different classes and in different race conditions during the 2009 FISA World Championship (Poznan, Poland). In particular a detailed environmental analysis was performed by measuring the wind direction, the wind speed and by evaluating the significant wave height and the wave peak period for each class during the semi-final phase and the final phase. It should be noted that, since wind is a key parameter affecting not only the boat speed but also the race strategy, the assessment of the wind velocity and of the wind direction has been made in connection with the boat movement. The comparison between coupled wind-wave data, boat speed and stroke rate evidently demonstrates that only crews that managed the adaption to changing in the environmental conditions from semi-final to final phase of the race, were able to get better results. References Kay, J., & Vamplew, W. (2002) Weather beaten: sport in the British climate. London: Ed. Mainstream Publishing. Lobozewicz, T. (1981) Meteorology in sport. Frankfurt: Ed. Sportverlag. Pezzoli, A,, Moncalero, M., Boscolo, A., Cristofori, E., Giacometto, F., Gastaldi, S., & Vercelli, G. (2010) The meteo-hydrological analysis and the sport performance: which are the connections? The case of the XXI Winter Olympic Games, Vancouver 2010, Journal of Sports Medicine and Physical Fitness, 50: 19-20. Pezzoli, A., & Cristofori, E. (2008) Analisi, previsioni e misure meteorologiche applicate agli sport equestri, in: 10th Congress "New findings in equine practices, Druento: Centro Internazionale del Cavallo Ed., p.38-4
Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366
Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims. The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods. We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the \u3b1/Fe overabundance. Results. We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less \u3b1/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions. The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. \ua9 ESO 2017
Molecular characterization and phylogenetic analysis of human influenza A viruses in three consecutive seasons with different epidemiological profiles
Introduction. Influenza activity and influenza virus circulation were observed in Lombardy (northern Italy) during three con- secutive seasons and the molecular characteristics of circulating viruses analysed to control for introduction of new variants. Methods. The molecular characterization of 38 isolates, namely 20 A/H3N2 and 18 A/H1N1 influenza strains from the 2005/06, 2006/07 and 2007/08 seasons, was performed by sequence analy- sis of the globular head region of the HA protein (HA1 subunit), specific for influenza virus A/H3 and A/H1.
Results and discussion. The last three influenza seasons in the study region were characterized by medium-low activity. A typical co-circulation of several variants was shown for A/H3 viruses for approximately two years and were subsequently almost entirely substituted by new emerging variants. Vice versa, A/H1 viruses had a more homogeneous circulation with a single lineage clearly dominating each season. The HA sequences of the A/H3 and the A/H1 viruses isolated in the last three seasons fell into 4 and 3 principal phylogenetic groups, respectively. No evidence of positive or negative selection in the sequence align- ments was observed.
Conclusions. Molecular characterization of the influenza viruses in three consecutive seasons highlighted considerable heteroge- neity in their HA sequences. A careful surveillance of genetic changes in the HA1 domain during seasonal influenza epidemics may reveal immune escape and provide early information on newly emerging strains with epidemiologic inference
Recommended from our members
Excess TPX2 Interferes with Microtubule Disassembly and Nuclei Reformation at Mitotic Exit.
The microtubule-associated protein TPX2 is a key mitotic regulator that contributes through distinct pathways to spindle assembly. A well-characterised function of TPX2 is the activation, stabilisation and spindle localisation of the Aurora-A kinase. High levels of TPX2 are reported in tumours and the effects of its overexpression have been investigated in cancer cell lines, while little is known in non-transformed cells. Here we studied TPX2 overexpression in hTERT RPE-1 cells, using either the full length TPX2 or a truncated form unable to bind Aurora-A, to identify effects that are dependent-or independent-on its interaction with the kinase. We observe significant defects in mitotic spindle assembly and progression through mitosis that are more severe when overexpressed TPX2 is able to interact with Aurora-A. Furthermore, we describe a peculiar, and Aurora-A-interaction-independent, phenotype in telophase cells, with aberrantly stable microtubules interfering with nuclear reconstitution and the assembly of a continuous lamin B1 network, resulting in daughter cells displaying doughnut-shaped nuclei. Our results using non-transformed cells thus reveal a previously uncharacterised consequence of abnormally high TPX2 levels on the correct microtubule cytoskeleton remodelling and G1 nuclei reformation, at the mitosis-to-interphase transition
Proof-of-concept Quantum Simulator based on Molecular Spin Qudits
The use of -level qudits instead of two-level qubits can largely increase
the power of quantum logic for many applications, ranging from quantum
simulations to quantum error correction. Molecular Nanomagnets are ideal spin
systems to realize these large-dimensional qudits. Indeed, their Hamiltonian
can be engineered to an unparalleled extent and can yield a spectrum with many
low-energy states. In particular, in the last decade intense theoretical,
experimental and synthesis efforts have been devoted to develop quantum
simulators based on Molecular Nanomagnets. However, this remarkable potential
is practically unexpressed, because no quantum simulation has ever been
experimentally demonstrated with these systems. Here we show the first
prototype quantum simulator based on an ensemble of molecular qudits and a
radiofrequency broadband spectrometer. To demonstrate the operativity of the
device, we have simulated quantum tunneling of the magnetization and the
transverse-field Ising model, representative of two different classes of
problems. These results represent an important step towards the actual use of
molecular spin qudits in quantum technologies
MUSE library of stellar spectra
Context. Empirical stellar spectral libraries have applications in both extragalactic and stellar studies, and they confer an advantage over theoretical libraries because they naturally include all relevant chemical species and physical processes. In recent years we have seen a stream of new sets of high-quality spectra, but increasing the spectral resolution and widening the wavelength coverage means resorting to multi-order echelle spectrographs. Assembling the spectra from many pieces results in lower fidelity of their shapes. Aims: We aim to offer the community a library of high-signal-to-noise spectra with reliable continuum shapes. Furthermore, the use of an integral field unit (IFU) alleviates the issue of slit losses. Methods: Our library was built with the MUSE (Multi-Unit Spectroscopic Explorer) IFU instrument. We obtained spectra over nearly the entire visual band (lambda ~ 4800-9300 AA). Results: We assembled a library of 35 high-quality MUSE spectra for a subset of the stars from the X-shooter Spectral Library. We verified the continuum shape of these spectra with synthetic broadband colors derived from the spectra. We also report some spectral indices from the Lick system, derived from the new observations. Conclusions: We offer a high-fidelity set of stellar spectra covering the Hertzsprung-Russell diagram. These can be used for both extragalactic and stellar studies and demonstrate that the IFUs are excellent tools for building reliable spectral libraries
Boson-boson scattering and Higgs production at the LHC from a six fermion point of view: four jets + l processes at \O(\alpha_{em}^6)
Boson-boson scattering and Higgs production in boson-boson fusion hold the
key to electroweak symmetry breaking. In order to analyze these essential
features of the Standard Model we have performed a partonic level study of all
processes at the LHC using the exact matrix
elements at \O(\alpha_{em}^6) provided by \Phase, a new MC generator. These
processes include also three boson production and the purely electroweak
contribution to \toptop production as well as all irreducible backgrounds.
Kinematical cuts have been studied in order to enhance the VV scattering signal
over background. \Phase has been compared with different Monte Carlo's showing
that a complete calculation is necessary for a correct description of the
process.Comment: 26 pages, 19 figure
Many-body localization and thermalization in the full probability distribution function of observables
We investigate the relation between thermalization following a quantum quench
and many-body localization in quasiparticle space in terms of the long-time
full distribution function of physical observables. In particular, expanding on
our recent work [E. Canovi {\em et al.}, Phys. Rev. B {\bf 83}, 094431 (2011)],
we focus on the long-time behavior of an integrable XXZ chain subject to an
integrability-breaking perturbation. After a characterization of the breaking
of integrability and the associated localization/delocalization transition
using the level spacing statistics and the properties of the eigenstates, we
study the effect of integrability-breaking on the asymptotic state after a
quantum quench of the anisotropy parameter, looking at the behavior of the full
probability distribution of the transverse and longitudinal magnetization of a
subsystem. We compare the resulting distributions with those obtained in
equilibrium at an effective temperature set by the initial energy. We find
that, while the long time distribution functions appear to always agree {\it
qualitatively} with the equilibrium ones, {\it quantitative} agreement is
obtained only when integrability is fully broken and the relevant eigenstates
are diffusive in quasi-particle space.Comment: 18 pages, 11 figure
The ETS Homologous Factor (EHF) Represents a Useful Immunohistochemical Marker for Predicting Prostate Cancer Metastasis.
The main aim of this study was to investigate the risk of prostate cancer metastasis formation associated with the expression of ETS homologous factor (EHF) in a cohort of bioptic samples. To this end, the expression of EHF was evaluated in a cohort of 152 prostate biopsies including primary prostate cancers that developed metastatic lesions, primary prostate cancers that did not develop metastasis, and benign lesions. Data here reported EHF as a candidate immunohistochemical prognostic biomarker for prostate cancer metastasis formation regardless of the Gleason scoring system. Indeed, our data clearly show that primary lesions with EHF positive cells ≥40% had a great risk of developing metastasis within five years from the first diagnosis. Patients with these lesions had about a 40-fold increased risk of developing metastasis as compared with patients with prostate lesions characterized by a percentage of EHF positive cells ≤30%. In conclusion, the immunohistochemical evaluation of EHF could significantly improve the management of prostate cancer patients by optimizing the diagnostic and therapeutic health procedures and, more important, ameliorating the patient's quality of life
- …