3 research outputs found

    Cell-cell interactions during the formation of primordial follicles in humans

    Get PDF
    Gametogenesis is a complex and sex-specific multistep process during which the gonadal somatic niche plays an essential regulatory role. One of the most crucial steps during human female gametogenesis is the formation of primordial follicles, the functional unit of the ovary that constitutes the pool of follicles available at birth during the entire reproductive life. However, the relation between human fetal germ cells (hFGCs) and gonadal somatic cells during the formation of the primordial follicles remains largely unexplored. We have discovered that hFGCs can form multinucleated syncytia, some connected via interconnecting intercellular bridges, and that not all nuclei in hFGC–syncytia were synchronous regarding meiotic stage. As hFGCs progressed in development, pre-granulosa cells formed protrusions that seemed to progressively constrict individual hFGCs, perhaps contributing to separate them from the multinucleated syncytia. Our findings highlighted the cell–cell interaction and molecular dynamics between hFGCs and (pre)granulosa cells during the formation of primordial follicles in humans. Knowledge on how the pool of primordial follicle is formed is important to understand human infertility. </p

    Fetal germ cell development in humans, a link with infertility

    No full text
    Gametes are cells that have the unique ability to give rise to new individuals as well as transmit (epi)genetic information across generations. Generation of functionally competent gametes, oocytes and sperm cells, depends to some extent on several fundamental processes that occur during fetal development. Direct studies on human fetal germ cells remain hindered by ethical considerations and inaccessibility to human fetal material. Therefore, the majority of our current knowledge of germ cell development still comes from an invaluable body of research performed using different mammalian species. During the last decade, our understanding of human fetal germ cells has increased due to the successful use of human pluripotent stem cells to model aspects of human early gametogenesis and advancements on single-cell omics. Together, this has contributed to determine the cell types and associated molecular signatures in the developing human gonads. In this review, we will put in perspective the knowledge obtained from several mammalian models (mouse, monkey, pig). Moreover, we will discuss the main events during human fetal (female) early gametogenesis and how the dysregulation of this highly complex and lengthy process can link to infertility later in life.Stem cells & developmental biolog

    Fetal germ cell development in humans, a link with infertility

    No full text
    Gametes are cells that have the unique ability to give rise to new individuals as well as transmit (epi)genetic information across generations. Generation of functionally competent gametes, oocytes and sperm cells, depends to some extent on several fundamental processes that occur during fetal development. Direct studies on human fetal germ cells remain hindered by ethical considerations and inaccessibility to human fetal material. Therefore, the majority of our current knowledge of germ cell development still comes from an invaluable body of research performed using different mammalian species. During the last decade, our understanding of human fetal germ cells has increased due to the successful use of human pluripotent stem cells to model aspects of human early gametogenesis and advancements on single-cell omics. Together, this has contributed to determine the cell types and associated molecular signatures in the developing human gonads. In this review, we will put in perspective the knowledge obtained from several mammalian models (mouse, monkey, pig). Moreover, we will discuss the main events during human fetal (female) early gametogenesis and how the dysregulation of this highly complex and lengthy process can link to infertility later in life
    corecore