320 research outputs found

    ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways.

    Get PDF
    Leukemia cells rely on two nucleotide biosynthetic pathways, de novo and salvage, to produce dNTPs for DNA replication. Here, using metabolomic, proteomic, and phosphoproteomic approaches, we show that inhibition of the replication stress sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) reduces the output of both de novo and salvage pathways by regulating the activity of their respective rate-limiting enzymes, ribonucleotide reductase (RNR) and deoxycytidine kinase (dCK), via distinct molecular mechanisms. Quantification of nucleotide biosynthesis in ATR-inhibited acute lymphoblastic leukemia (ALL) cells reveals substantial remaining de novo and salvage activities, and could not eliminate the disease in vivo. However, targeting these remaining activities with RNR and dCK inhibitors triggers lethal replication stress in vitro and long-term disease-free survival in mice with B-ALL, without detectable toxicity. Thus the functional interplay between alternative nucleotide biosynthetic routes and ATR provides therapeutic opportunities in leukemia and potentially other cancers.Leukemic cells depend on the nucleotide synthesis pathway to proliferate. Here the authors use metabolomics and proteomics to show that inhibition of ATR reduced the activity of these pathways thus providing a valuable therapeutic target in leukemia

    Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements

    Get PDF
    IT-101, a cyclodextrin polymer-based nanoparticle containing camptothecin, is in clinical development for the treatment of cancer. Multiorgan pharmacokinetics and accumulation in tumor tissue of IT-101 is investigated by using PET. IT-101 is modified through the attachment of a 1,4,7,10-tetraazacyclododecane-1,4,7-Tris-acetic acid ligand to bind ^(64)Cu^(2+). This modification does not affect the particle size and minimally affects the surface charge of the resulting nanoparticles. PET data from ^(64)Cu-labeled IT-101 are used to quantify the in vivo biodistribution in mice bearing Neuro2A s.c. tumors. The ^(64)Cu-labeled IT-101 displays a biphasic plasma elimination. Approximately 8% of the injected dose is rapidly cleared as a low-molecular-weight fraction through the kidneys. The remaining material circulates in plasma with a terminal half-life of 13.3 h. Steadily increasing concentrations, up to 11% injected dose per cm^3, are observed in the tumor over 24 h, higher than any other tissue at that time. A 3-compartment model is used to determine vascular permeability and nanoparticle retention in tumors, and is able to accurately represent the experimental data. The calculated tumor vascular permeability indicates that the majority of nanoparticles stay intact in circulation and do not disassemble into individual polymer strands. A key assumption to modeling the tumor dynamics is that there is a “sink” for the nanoparticles within the tumor. Histological measurements using confocal microscopy show that IT-101 localizes within tumor cells and provides the sink in the tumor for the nanoparticles

    Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review

    Get PDF
    The increasing use of serial PET/CT scans in the management of pediatric malignancies raises the important consideration of radiation exposure in children. To estimate the cumulative radiation dose from PET/CT studies to children with malignancy and to compare with the data in literature. Two hundred forty-eight clinical PET/CT studies performed on 78 patients (50 boys/28 girls, 1.3 to 18 years old from December 2002 to October 2007) were retrospectively reviewed under IRB approval. The whole-body effective dose (ED) estimates for each child were obtained by estimating the effective dose from each PET/CT exam performed using the ImPACT Patient Dosimetry Calculator for CT and OLINDA for PET. The average number of PET/CT studies was 3.2 per child (range: 1 to 14 studies). The average ED of an individual CT study was 20.3 mSv (range: 2.7 to 54.2), of PET study was 4.6 mSv (range: 0.4 to 7.7) and of PET/CT study was 24.8 mSv (range: 6.2 to 60.7). The average cumulative radiation dose per patient from CT studies was 64.4 mSv (range: 2.7 to 326), from PET studies was 14.5 mSv (range: 2.8 to 73) and from PET/CT studies was 78.9 mSv (range: 6.2 to 399). The radiation exposure from serial PET/CT studies performed in pediatric malignancies was considerable; however, lower doses can be used for both PET and CT studies. The ALARA principle must be applied without sacrificing diagnostic information

    FDG-PET/CT Imaging Predicts Histopathologic Treatment Responses after Neoadjuvant Therapy in Adult Primary Bone Sarcomas

    Get PDF
    Purpose. The aim of this study was to prospectively evaluate whether FDG-PET allows an accurate assessment of histopathologic response to neoadjuvant treatment in adult patients with primary bone sarcomas. Methods. Twelve consecutive patients with resectable, primary high grade bone sarcomas were enrolled prospectively. FDG-PET/CT imaging was performed prior to the initiation and after completion of neoadjuvant treatment. Imaging findings were correlated with histopathologic response. Results. Histopathologic responders showed significantly more pronounced decreases in tumor FDG-SUVmax from baseline to late follow up than non-responders (64 ± 19% versus 29 ± 30 %, resp.; P = .03). Using a 60% decrease in tumor FDG-uptake as a threshold for metabolic response correctly classified 3 of 4 histopathologic responders and 7 of 8 histopathologic non-responders as metabolic responders and non-responders, respectively (sensitivity, 75%; specificity, 88%). Conclusion. These results suggest that changes in FDG-SUVmax at the end of neoadjuvant treatment can identify histopathologic responders and non-responders in adult primary bone sarcoma patients

    Extrapulmonary small cell sarcinoma: involvement of the brain without evidence of extracranial malignancy by serial PET/CT scans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extrapulmonary small cell carcinoma (EPSCC) involving the brain is a rare manifestation of an uncommon tumor type.</p> <p>Case presentation</p> <p>We report a 59 year-old Caucasian female diagnosed with an EPSCC involving the left parietal lobe without detectable extracranial primary tumor followed by serial positron emission tomography/computed tomography (PET/CT) imaging. Histopathological examination at both initial presentation and recurrence revealed small cell carcinoma. Serial PET/CT scans of the entire body failed to reveal any extracranial [<sup>18</sup>F]2-fluoro-2-deoxy-D-glucose (FDG) avid lesions at either diagnosis or follow-up.</p> <p>Conclusion</p> <p>Chemotherapy may show a transient response in the treatment of EPSCC. Further studies are needed to help identify optimal treatment strategies. Combination PET/CT technology may be a useful tool to monitor EPSCC and assess for an occult primary malignancy.</p

    Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities

    Get PDF
    © 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis

    Myocardial perfusion reserve compared with peripheral perfusion reserve: A [13N]ammonia PET study

    Get PDF
    INTRODUCTION: [13N]ammonia PET allows quantification of myocardial perfusion. The similarity between peripheral flow and myocardial perfusion is unclear. We compared perfusion flow in the myocardium with the upper limb during rest and adenosine stress [13N]ammonia PET to establish whether peripheral perfusion reserve (PPR) correlates with MPR. METHODS: [13N]ammonia myocardial perfusion PET-scans of 58 patients were evaluated (27 men, 31 women, age 64 ± 13 years) and were divided in four subgroups: patients with coronary artery disease (CAD, n = 15), cardiac syndrome X (SX, n = 14), idiopathic dilating cardiomyopathy (DCM, n = 16), and normal controls (NC, n = 13). Peripheral limb perfusion was measured in the muscular tissue of the proximal upper limb and quantified through a 2-tissue-compartment model and the PPR was calculated (stress/rest ratio). MPR was also calculated by a 2-tissue-compartment model. The PPR results were compared with the MPR findings. RESULTS: Mean myocardial perfusion increased significantly in all groups as evidenced by the MPR (CAD 1.99 ± 0.47; SX 1.39 ± 0.31; DCM 1.72 ± 0.69; NC 2.91 ± 0.78). Mean peripheral perfusion also increased but not significantly and accompanied with great variations within and between groups (mean PPR: CAD 1.30 ± 0.79; SX 1.36 ± 0.71; DCM 1.60 ± 1.22; NC 1.27 ± 0.63). The mean difference between PPR and MPR for all subpopulations varied widely. No significant correlations in flow reserve were found between peripheral and myocardial microcirculatory beds in any of the groups (Total group: r = -0.07, SEE = 0.70, CAD: r = 0.14, SEE = 0.48, SX: r = 0.17, SEE = 0.30, DCM: r = -0.11, SEE = 0.71, NC: r = -0.19, SEE = 0.80). CONCLUSION: No correlations between myocardial and peripheral perfusion (reserve) were found in different patient populations in the same PET session. This suggests a functional difference between peripheral and myocardial flow in the response to intravenously administered adenosine stress
    corecore