231 research outputs found

    G-Protein Coupled Receptor 18 Contributes to Establishment of the CD8 Effector T Cell Compartment.

    Get PDF
    The requirements for effector and memory CD8 T cell development are incompletely understood. Recent work has revealed a role for G-protein coupled receptor 18 (GPR18) in establishment of the intestinal CD8αα intraepithelial lymphocyte compartment. Here, we report that GPR18 is also functionally expressed in conventional CD8αβ T cells. When the receptor is lacking, mice develop fewer CD8+ KLRG1+ Granzyme B+ effector-memory cells. Bone marrow chimera studies show that the GPR18 requirement is CD8 T cell intrinsic. GPR18 is not required for T-bet expression in KLRG1+ CD8 T cells. Gene transduction experiments confirm the functional activity of GPR18 in CD8 T cells. In summary, we describe a novel GPCR requirement for establishment or maintenance of the CD8 KLRG1+ effector-memory T cell compartment. These findings have implications for methods to augment CD8 effector cell numbers

    Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection

    Get PDF
    AbstractMotheaten viable (mev) mice are deficient in the cytosolic protein tyrosine phosphatase, PTP1C, and exhibit severe B cell immunodeficiency and autoantibody production. The role of PTP1 C in B cell selection and function was analyzed by breeding immunoglobulin transgenes specific for a defined antigen, hen egg lysozyme, into mav mice. Antigen triggered a greater and more rapid elevation of intracellular calcium in PTP1 C-deficient B cells, indicating that this phosphatase negatively regulates immunoglobulin signaling. Elimination of self-reactive B cells carrying this signal-enhancing mutation was triggered during their development by binding a lower valency form of self-antigen than is normally required. These findings establish that activation of distinct repertoire-censoring mechanisms depends on quantitative differences in antigen receptor signaling, whose thresholds are determined by negative regulation through PTP1C

    Thymic egress: S1P of 1000

    Get PDF
    Recent studies have begun to illuminate the mechanism of T-cell export from the thymus, with the identification of a required lysophospholipid receptor, two upstream transcription factors, and several downstream regulators of cytoskeleton dynamics. This work has generated immediate translational impact, aiding the design of immunosuppressant drugs and the identification of a novel form of human immunodeficiency

    Integrin-dependence of Lymphocyte Entry into the Splenic White Pulp

    Get PDF
    The steps involved in lymphocyte homing to the white pulp cords of the spleen are poorly understood. We demonstrate here that the integrins lymphocyte function associated (LFA)-1 and α4β1 make essential and mostly overlapping contributions necessary for B cell migration into white pulp cords. T cell entry to the white pulp is also reduced by blockade of LFA-1 and α4β1. The LFA-1 ligand, intercellular adhesion molecule 1 is critical for lymphocyte entry and both hematopoietic cells and radiation-resistant cells contribute to this requirement. Vascular cell adhesion molecule 1 contributes to the α4β1 ligand requirement and a second ligand, possibly fibronectin, also plays a role. By contrast with the entry requirements, antigen-induced movement of B cells from follicles to the outer T zone is not prevented by integrin blocking antibodies. Comparison of the distribution of integrin-blocked B cells and B cells treated with the Gαi inhibitor, pertussis toxin, early after transfer reveals in both cases reduced accumulation in the inner marginal zone. These observations suggest that chemokine receptor signaling and the integrins LFA-1 and α4β1 function together to promote lymphocyte transit from the marginal zone into white pulp cords

    Overlapping Roles of CXCL13, Interleukin 7 Receptor α, and CCR7 Ligands in Lymph Node Development

    Get PDF
    Lymphoid tissue development is associated with local accumulation of CD4+ CD3− IL-7Rαhi hematopoietic cells that deliver lymphotoxin (LT)α1β2 signals to resident stromal cells. Previous studies have established an important role for CXCL13 (BLC) in the development of Peyer's patches (PP) and some peripheral lymph nodes (LNs), but the chemokine requirements for several LN types, including mesenteric LNs, remain undefined. Using CXCL13−/− mice that additionally carry the paucity of LN T cell mutation (plt/plt), we discovered that CCR7 ligands function in peripheral LN development. We also tested for a genetic interaction during LN development between CXCL13 and a cytokine receptor required in PP development, IL-7Rα. Mice deficient for both CXCL13 and IL-7Rα displayed a striking absence of LNs, including mesenteric LNs. These data extend the role of CXCL13 to the development of all LNs and establish a previously unappreciated role for IL-7Rα in this process. Both circulating and LN CD4+ CD3− IL-7Rαhi cells are shown to express LTα1β2 in an IL-7Rα–dependent manner. Furthermore, CXCL13 was found to be sufficient to mediate CD4+ CD3− IL-7Rαhi cell recruitment in vivo to an ectopic site. These findings indicate that CXCL13 and CCR7 ligands promote accumulation of CD4+ CD3− IL-7Rαhi cells, delivering IL-7Rα–dependent LTα1β2 signals critical for LN development
    corecore