277 research outputs found

    Piezoelectric Electron-Phonon Interaction from Ab Initio Dynamical Quadrupoles: Impact on Charge Transport in Wurtzite GaN

    Get PDF
    First-principles calculations of e−ph interactions are becoming a pillar of electronic structure theory. However, the current approach is incomplete. The piezoelectric (PE) e−ph interaction, a long-range scattering mechanism due to acoustic phonons in noncentrosymmetric polar materials, is not accurately described at present. Current calculations include short-range e−ph interactions (obtained by interpolation) and the dipolelike Frölich long-range coupling in polar materials, but lack important quadrupole effects for acoustic modes and PE materials. Here we derive and compute the long-range e−ph interaction due to dynamical quadrupoles, and apply this framework to investigate e−ph interactions and the carrier mobility in the PE material wurtzite GaN. We show that the quadrupole contribution is essential to obtain accurate e−ph matrix elements for acoustic modes and to compute PE scattering. Our work resolves the outstanding problem of correctly computing e−ph interactions for acoustic modes from first principles, and enables studies of e−ph coupling and charge transport in PE materials

    Long-range quadrupole electron-phonon interaction from first principles

    Get PDF
    Lattice vibrations in materials induce perturbations on the electron dynamics in the form of long-range (dipole and quadrupole) and short-range (octopole and higher) potentials. The dipole Fröhlich term can be included in current first-principles electron-phonon (e-ph) calculations and is present only in polar materials. The quadrupole e-ph interaction is present in both polar and nonpolar materials, but currently it cannot be computed from first principles. Here we show an approach to compute the quadrupole e-ph interaction and include it in ab initio calculations of e-ph matrix elements. The accuracy of the approach is demonstrated by comparing with direct density functional perturbation theory calculations. We apply our method to silicon as a case of a nonpolar semiconductor and tetragonal PbTiO₃ as a case of a polar piezoelectric material. In both materials we find that the quadrupole term strongly impacts the e-ph matrix elements. Analysis of e-ph interactions for different phonon modes reveals that the quadrupole term mainly affects optical modes in silicon and acoustic modes in PbTiO₃, although the quadrupole term is needed for all modes to achieve quantitative accuracy. The effect of the quadrupole e-ph interaction on electron scattering processes and transport is shown to be important. Our approach enables accurate studies of e-ph interactions in broad classes of nonpolar, polar, and piezoelectric materials

    Comparison of non-magnetic and magnetic beads multiplex assay for assessment of Plasmodium falciparum antibodies

    Get PDF
    Background New reagents have emerged allowing researchers to assess a growing number of vaccine-associated immune parameters. Multiplex immunoassay(s) are emerging as efficient high-throughput assays in malaria serology. Currently, commercial vendors market several bead reagents for cytometric bead assays (CBA) but relative performances are not well published. We have compared two types of bead-based multiplex assays to measure relative antibody levels to malarial antigens. Methods Assays for the measurement of antibodies to five Plasmodium falciparum vaccine candidates using non-magnetic and magnetic fluorescent microspheres were compared for their performances with a Bio-Plex200 instrument. Mean fluorescence intensity (MFI) was determined from individuals from western Kenya and compared to known positive and negative control plasma samples. Results P. falciparum recombinant antigens were successfully coupled to both non-magnetic and magnetic beads in multiplex assays. MFIs between the two bead types were comparable for all antigens tested. Bead recovery was superior with magnetic beads for all antigens. MFI values of stored non-magnetic coupled beads did not differ from freshly coupled beads, though they showed higher levels of bead aggregation. Discussion Magnetic and non-magnetic beads performed similarly in P. falciparum antibody assays. Magnetic beads were more expensive, but had higher bead recovery, were more convenient to use, and provided rapid and easy protocol manipulation. Magnetic beads are a suitable alternative to non-magnetic beads in malarial antibody serology

    The role of magnetic anisotropy in the Kondo effect

    Get PDF
    In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.Comment: 14 pages, 4 figures, published in Nature Physic

    The burden of diarrhoea, shigellosis, and cholera in North Jakarta, Indonesia: findings from 24 months surveillance

    Get PDF
    BACKGROUND: In preparation of vaccines trials to estimate protection against shigellosis and cholera we conducted a two-year community-based surveillance study in an impoverished area of North Jakarta which provided updated information on the disease burden in the area. METHODS: We conducted a two-year community-based surveillance study from August 2001 to July 2003 in an impoverished area of North Jakarta to assess the burden of diarrhoea, shigellosis, and cholera. At participating health care providers, a case report form was completed and stool sample collected from cases presenting with diarrhoea. RESULTS: Infants had the highest incidences of diarrhoea (759/1 000/year) and cholera (4/1 000/year). Diarrhea incidence was significantly higher in boys under 5 years (387/1 000/year) than girls under 5 years (309/1 000/year; p < 0.001). Children aged 1 to 2 years had the highest incidence of shigellosis (32/1 000/year). Shigella flexneri was the most common Shigella species isolated and 73% to 95% of these isolates were resistant to ampicillin, trimethoprim-sulfamethoxazole, chloramphenicol and tetracycline but remain susceptible to nalidixic acid, ciprofloxacin, and ceftriaxone. We found an overall incidence of cholera of 0.5/1 000/year. Cholera was most common in children, with the highest incidence at 4/1 000/year in those less than 1 year of age. Of the 154 V. cholerae O1 isolates, 89 (58%) were of the El Tor Ogawa serotype and 65 (42%) were El Tor Inaba. Thirty-four percent of patients with cholera were intravenously rehydrated and 22% required hospitalization. V. parahaemolyticus infections were detected sporadically but increased from July 2002 onwards. CONCLUSION: Diarrhoea causes a heavy public health burden in Jakarta particularly in young children. The impact of shigellosis is exacerbated by the threat of antimicrobial resistance, whereas that of cholera is aggravated by its severe manifestations
    • …
    corecore