29 research outputs found

    A mega-analysis of expression quantitative trait loci (eQTL) provides insight into the regulatory architecture of gene expression variation in liver

    Get PDF
    TS was an awardee of the Roche Internships for Scientific Exchange (RiSE) Programme. The work has been supported in part by institutional funds (TG77) of the Institute of Human Genetics Regensburg and by a grant from the Helmut Ecker Foundation (Ingolstadt, Germany) to BHFW (No. 05/17).Peer reviewedPublisher PD

    Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration

    Full text link
    Age-related macular degeneration (AMD) is a progressive disease of the retinal pigment epithelium (RPE) and the retina leading to loss of central vision. Polymorphisms in genes involved in lipid metabolism, including the ATP-binding cassette transporter A1 (), have been associated with AMD risk. However, the significance of retinal lipid handling for AMD pathogenesis remains elusive. Here, we study the contribution of lipid efflux in the RPE by generating a mouse model lacking ABCA1 and its partner ABCG1 specifically in this layer. Mutant mice show lipid accumulation in the RPE, reduced RPE and retinal function, retinal inflammation and RPE/photoreceptor degeneration. Data from human cell lines indicate that the AMD risk-conferring allele decreases expression, identifying the potential molecular cause that underlies the genetic risk for AMD. Our results highlight the essential homeostatic role for lipid efflux in the RPE and suggest a pathogenic contribution of reduced ABCA1 function to AMD

    PLoS One

    Get PDF
    Age-related macular degeneration (AMD) is a common, progressive multifactorial vision-threatening disease and many genetic and environmental risk factors have been identified. The risk of AMD is influenced by lifestyle and diet, which may be reflected by an altered metabolic profile. Therefore, measurements of metabolites could identify biomarkers for AMD, and could aid in identifying high-risk individuals. Hypothesis-free technologies such as metabolomics have a great potential to uncover biomarkers or pathways that contribute to disease pathophysiology. To date, only a limited number of metabolomic studies have been performed in AMD. Here, we aim to contribute to the discovery of novel biomarkers and metabolic pathways for AMD using a targeted metabolomics approach of 188 metabolites. This study focuses on non-advanced AMD, since there is a need for biomarkers for the early stages of disease before severe visual loss has occurred. Targeted metabolomics was performed in 72 patients with early or intermediate AMD and 72 control individuals, and metabolites predictive for AMD were identified by a sparse partial least squares discriminant analysis. In our cohort, we identified four metabolite variables that were most predictive for early and intermediate stages of AMD. Increased glutamine and phosphatidylcholine diacyl C28:1 levels were detected in non-advanced AMD cases compared to controls, while the rate of glutaminolysis and the glutamine to glutamate ratio were reduced in non-advanced AMD. The association of glutamine with non-advanced AMD corroborates a recent report demonstrating an elevated glutamine level in early AMD using a different metabolomics technique. In conclusion, this study indicates that metabolomics is a suitable method for the discovery of biomarker candidates for AMD. In the future, larger metabolomics studies could add to the discovery of novel biomarkers in yet unknown AMD pathways and expand our insights in AMD pathophysiology

    Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future

    Get PDF
    Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95%

    Scavenger Receptor BI-mediated Selective Uptake Is Required for the Remodeling of High Density Lipoprotein by Endothelial Lipase

    No full text
    Endothelial lipase (EL) is a negative regulator of high density lipoprotein (HDL) cholesterol plasma levels, and scavenger receptor BI (SR-BI) is involved in remodeling of HDL. The present study investigates the requirement of SR-BI for the effects of EL- mediated phospholipid hydrolysis on HDL metabolism in vivo. In vitro, selective uptake from EL- modified HDL was 129% higher than selective uptake from control HDL in SR-BI-overexpressing cells (p = 0.01). In vivo overexpression of human EL by means of recombinant adenovirus decreased HDL plasma levels significantly (p <0.01). Fast protein liquid chromatography analysis and agarose gel electrophoresis revealed that EL expression resulted in the generation of small pre-beta HDL particles in wild-type mice, whereas in SR-BI-/- mice small HDL were preferentially removed. In kinetic experiments the fractional catabolic rate (FCR) of HDL cholesteryl ester increased by 110% (p <0.001), and the FCR of HDL apolipoproteins increased by 64% (p <0.001) in response to EL overexpression in wild-type mice. In SR-BI-/- mice a similar increase in the HDL apolipoprotein FCR occurred (p <0.001); however, there was no further increase in HDL cholesteryl ester catabolism. The apparent whole body selective uptake was increased 3-fold by EL in wild-type mice (p <0.001), whereas there was no selective uptake in SR-BI knock-out mice. EL overexpression increased hepatic selective uptake as well as holoparticle uptake (each p <0.01) in wild-typemice, whereas in SR-BI knock-out mice only holoparticle uptake increased (p <0.01). Our results indicate that SR-BI-mediated selective uptake of HDL cholesteryl ester is essential for the remodeling of large alpha-migrating HDL particles by EL

    Regulated efflux of photoreceptor outer segment-derived cholesterol by human RPE cells

    No full text
    Genetic studies have linked age-related macular degeneration (AMD) to genes involved in high-density lipoprotein (HDL) metabolism, including ATP-binding cassette transporter Al (ABCA1). The retinal pigment epithelium (RPE) handles large amounts of lipids, among others cholesterol, partially derived from internalized photoreceptor outer segments (OS) and lipids physiologically accumulate in the aging eye. To analyze the potential function of ABCA1 in the eye, we measured cholesterol efflux, the first step of HDL generation, in RPE cells. We show the expression of selected genes related to HDL metabolism in mouse and human eyecups as well as in ARPE-19 and human primary RPE cells. Immunofluorescence staining revealed localization of ABCA1 on both sides of polarized RPE cells. This was functionally confirmed by directional efflux to apolipoprotein Al (ApoA-I) of H-3-labeled cholesterol given to the cells via serum or via OS. ABCA1 expression and activity was modulated using a liver-X-receptor (LXR) agonist and an ABCA1 neutralizing antibody, demonstrating that the efflux was ABCA1-dependent. We concluded that the ABCAl-mediated lipid efflux pathway, and hence HDL biosynthesis, is functional in RPE cells towards both the basal (choroidal) and apical (subretinal) space. Impaired activity of the pathway might cause age-related perturbations of lipid homeostasis in the outer retina and thus may contribute to disease development and/or progression. (C) 2017 Elsevier Ltd. All rights reserved
    corecore