52 research outputs found

    Research Centre for Healthy and Sustainable Living

    Full text link
    [EN] The Research Centre for Healthy and Sustainable Living of the University of Applied Sciences Utrecht aims to enable healthy urban living. According to the latest concept, health entails the capacity to respond resiliently to stressors that disturb homeostasis. In addition, an individual’s health benefits from the ability to self-manage and is determined by personalized conditions. One of the derived research challenges is to obtain know-how (biomarkers) and tools (e.g. point-of-care, wearables) to monitor an individual’s health condition in daily life. The well-known quotes “you are what you eat” and “sitting is the new smoking” indicate that condition of the oro-gastrointestinal tract and physical activity are pivotal to health. With this popular knowledge, we set out to identify biomarkers to monitor health benefits from nutrition and physical activity. Our first studies with human volunteers indicated that immune and intestinal parameters are responsive to physical stress (performed on a bicycle ergometer) in a clear kinetic manner, related to extent of physical activity and influenced by an unhealthy condition (deprivation of water intake during exercise). Our next research goals are to: -evaluate the initial selection of biomarkers in specific patient-groups and; -how these biomarkers are influenced by the condition of the oro-gastrointestinal tract, e.g. via nutrition.Pieters, R.; Bleijenberg, N.; Jerkovic, K.; Krul, C.; Veenhof, C.; Wittink, H. (2020). Research Centre for Healthy and Sustainable Living. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/156433OC

    Prediction of carcinogenic potential of chemicals using repeated-dose (13-week) toxicity data

    Get PDF
    AbstractSub-chronic toxicity studies of 163 non-genotoxic chemicals were evaluated in order to predict the tumour outcome of 24-month rat carcinogenicity studies obtained from the EFSA and ToxRef databases. Hundred eleven of the 148 chemicals that did not induce putative preneoplastic lesions in the sub-chronic study also did not induce tumours in the carcinogenicity study (True Negatives). Cellular hypertrophy appeared to be an unreliable predictor of carcinogenicity. The negative predictivity, the measure of the compounds evaluated that did not show any putative preneoplastic lesion in de sub-chronic studies and were negative in the carcinogenicity studies, was 75%, whereas the sensitivity, a measure of the sub-chronic study to predict a positive carcinogenicity outcome was only 5%. The specificity, the accuracy of the sub-chronic study to correctly identify non-carcinogens was 90%. When the chemicals which induced tumours generally considered not relevant for humans (33 out of 37 False Negatives) are classified as True Negatives, the negative predictivity amounts to 97%. Overall, the results of this retrospective study support the concept that chemicals showing no histopathological risk factors for neoplasia in a sub-chronic study in rats may be considered non-carcinogenic and do not require further testing in a carcinogenicity study

    Effects of exercise during chemo- or radiotherapy on immune markers - a systematic review

    Get PDF
    INTRODUCTION: Patients with cancer receiving radio- or chemotherapy undergo many immunological stressors. Chronic regular exercise has been shown to positively influence the immune system in several populations, while exercise overload may have negative effects. Exercise is currently recommended for all patients with cancer. However, knowledge regarding the effects of exercise on immune markers in patients undergoing chemo- or radiotherapy is limited. The aim of this study is to systematically review the effects of moderate- and high-intensity exercise interventions in patients with cancer during chemotherapy or radiotherapy on immune markers. METHODS: For this review, a search was performed in PubMed and EMBASE, until March 2023. Methodological quality was assessed with the PEDro tool and best-evidence syntheses were performed both per immune marker and for the inflammatory profile. RESULTS: Methodological quality of the 15 included articles was rated fair to good. The majority of markers were unaltered, but observed effects included a suppressive effect of exercise during radiotherapy on some pro-inflammatory markers, a preserving effect of exercise during chemotherapy on NK cell degranulation and cytotoxicity, a protective effect on the decrease in thrombocytes during chemotherapy, and a positive effect of exercise during chemotherapy on IgA. CONCLUSION: Although exercise only influenced a few markers, the results are promising. Exercise did not negatively influence immune markers, and some were positively affected since suppressed inflammation might have positive clinical implications. For future research, consensus is needed regarding a set of markers that are most responsive to exercise. Next, differential effects of training types and intensities on these markers should be further investigated, as well as their clinical implications

    Effects of exercise during chemo- or radiotherapy on immune markers - a systematic review

    Get PDF
    INTRODUCTION: Patients with cancer receiving radio- or chemotherapy undergo many immunological stressors. Chronic regular exercise has been shown to positively influence the immune system in several populations, while exercise overload may have negative effects. Exercise is currently recommended for all patients with cancer. However, knowledge regarding the effects of exercise on immune markers in patients undergoing chemo- or radiotherapy is limited. The aim of this study is to systematically review the effects of moderate- and high-intensity exercise interventions in patients with cancer during chemotherapy or radiotherapy on immune markers. METHODS: For this review, a search was performed in PubMed and EMBASE, until March 2023. Methodological quality was assessed with the PEDro tool and best-evidence syntheses were performed both per immune marker and for the inflammatory profile. RESULTS: Methodological quality of the 15 included articles was rated fair to good. The majority of markers were unaltered, but observed effects included a suppressive effect of exercise during radiotherapy on some pro-inflammatory markers, a preserving effect of exercise during chemotherapy on NK cell degranulation and cytotoxicity, a protective effect on the decrease in thrombocytes during chemotherapy, and a positive effect of exercise during chemotherapy on IgA. CONCLUSION: Although exercise only influenced a few markers, the results are promising. Exercise did not negatively influence immune markers, and some were positively affected since suppressed inflammation might have positive clinical implications. For future research, consensus is needed regarding a set of markers that are most responsive to exercise. Next, differential effects of training types and intensities on these markers should be further investigated, as well as their clinical implications

    DARTpaths, an in silico platform to investigate molecular mechanisms of compounds

    Get PDF
    SUMMARY: Xpaths is a collection of algorithms that allow for the prediction of compound-induced molecular mechanisms of action by integrating phenotypic endpoints of different species; and proposes follow-up tests for model organisms to validate these pathway predictions. The Xpaths algorithms are applied to predict developmental and reproductive toxicity (DART) and implemented into an in silico platform, called DARTpaths. AVAILABILITY AND IMPLEMENTATION: All code is available on GitHub https://github.com/Xpaths/dartpaths-app under Apache license 2.0, detailed overview with demo is available at https://www.vivaltes.com/dartpaths/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Report of the First ONTOX Stakeholder Network Meeting: Digging Under the Surface of ONTOX Together With the Stakeholders

    Get PDF
    The first Stakeholder Network Meeting of the EU Horizon 2020-funded ONTOX project was held on 13–14 March 2023, in Brussels, Belgium. The discussion centred around identifying specific challenges, barriers and drivers in relation to the implementation of non-animal new approach methodologies (NAMs) and probabilistic risk assessment (PRA), in order to help address the issues and rank them according to their associated level of difficulty. ONTOX aims to advance the assessment of chemical risk to humans, without the use of animal testing, by developing non-animal NAMs and PRA in line with 21st century toxicity testing principles. Stakeholder groups (regulatory authorities, companies, academia, non-governmental organisations) were identified and invited to participate in a meeting and a survey, by which their current position in relation to the implementation of NAMs and PRA was ascertained, as well as specific challenges and drivers highlighted. The survey analysis revealed areas of agreement and disagreement among stakeholders on topics such as capacity building, sustainability, regulatory acceptance, validation of adverse outcome pathways, acceptance of artificial intelligence (AI) in risk assessment, and guaranteeing consumer safety. The stakeholder network meeting resulted in the identification of barriers, drivers and specific challenges that need to be addressed. Breakout groups discussed topics such as hazard versus risk assessment, future reliance on AI and machine learning, regulatory requirements for industry and sustainability of the ONTOX Hub platform. The outputs from these discussions provided insights for overcoming barriers and leveraging drivers for implementing NAMs and PRA. It was concluded that there is a continued need for stakeholder engagement, including the organisation of a ‘hackathon’ to tackle challenges, to ensure the successful implementation of NAMs and PRA in chemical risk assessment

    Symposium end report, SLIM; Faster from innovations to humans

    No full text
    This article describes the final meeting for the program SLiM (Sneller van innovatie naar mens). In cooperation with the Netherlands Knowledge Centre on Alternatives to animal use (NKCA) an overview was given of the results on accelerated acceptance of Replacement, Refinement and Reduction (3R) of animals in research
    corecore