130 research outputs found

    Multiple Quantum Oscillations in the de Haas van Alphen Spectra of the Underdoped High Temperature Superconductor YBa_2Cu_3O_6.5

    Full text link
    By improving the experimental conditions and extensive data accumulation, we have achieved very high-precision in the measurements of the de Haas-van Alphen effect in the underdoped high-temperature superconductor YBa2_{2}Cu3_{3}O6.5_{6.5}. We find that the main oscillation, so far believed to be single-frequency, is composed of three closely spaced frequencies. We attribute this to bilayer splitting and warping of a single quasi-2D Fermi surface, indicating that \emph{c}-axis coherence is restored at low temperature in underdoped cuprates. Our results do not support the existence of a larger frequency of the order of 1650 T reported recently in the same compound [S.E. Sebastian {\it et al}., Nature {\bf 454}, 200 (2008)]

    Magnetoresistance of semi-metals: the case of antimony

    Full text link
    Large unsaturated magnetoresistance has been recently reported in numerous semi-metals. Many of them have a topologically non-trivial band dispersion, such as Weyl nodes or lines. Here, we show that elemental antimony displays the largest high-field magnetoresistance among all known semi-metals. We present a detailed study of the angle-dependent magnetoresistance and use a semi-classical framework invoking an anisotropic mobility tensor to fit the data. A slight deviation from perfect compensation and a modest variation with magnetic field of the components of the mobility tensor are required to attain perfect fits at arbitrary strength and orientation of magnetic field in the entire temperature window of study. Our results demonstrate that large orbital magnetoresistance is an unavoidable consequence of low carrier concentration and the sub-quadratic magnetoresistance seen in many semi-metals can be attributed to field-dependent mobility, expected whenever the disorder length-scale exceeds the Fermi wavelength.Comment: Supplementary material on reques

    An electronic instability in bismuth far beyond the quantum limit

    Full text link
    We present a transport study of semi-metallic bismuth in presence of a magnetic field applied along the trigonal axis extended to 55 T for electric conductivity and to 45 T for thermoelectric response. The results uncover a new field scale at about 40 T in addition to the previously detected ones. Large anomalies in all transport properties point to an intriguing electronic instability deep in the ultraquantum regime. Unexpectedly, both the sheer magnitude of conductivity and its metallic temperature dependence are enhanced by this instability.Comment: 5 pages, 4 figure

    Fermi liquid behavior of the in-plane resistivity in the pseudogap state of YBa_2Cu_4O_8

    Full text link
    Our knowledge of the ground state of underdoped hole-doped cuprates has evolved considerably over the last few years. There is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry leading to a reconstructed Fermi surface made of small pockets. Quantum oscillations, [Doiron-Leyraud N, et al. (2007) Nature 447:564-568], optical conductivity [Mirzaei SI, et al. (2013) Proc Natl Acad Sci USA 110:5774-5778] and the validity of Wiedemann-Franz law [Grissonnache G, et al. (2016) Phys. Rev. B 93:064513] point to a Fermi liquid regime at low temperature in the underdoped regime. However, the observation of a quadratic temperature dependence in the electrical resistivity at low temperatures, the hallmark of a Fermi liquid regime, is still missing. Here, we report magnetoresistance measurements in the magnetic-field-induced normal state of underdoped YBa_2Cu_4O_8 which are consistent with a T^2 resistivity extending down to 1.5 K. The magnitude of the T^2 coefficient, however, is much smaller than expected for a single pocket of the mass and size observed in quantum oscillations, implying that the reconstructed Fermi surface must consist of at least one additional pocket.Comment: Main + SI : published versio

    de Haas-van Alphen oscillations in the underdoped cuprate YBa2_2Cu3_3O6.5_{6.5}

    Full text link
    The de Haas-van Alphen effect was observed in the underdoped cuprate YBa2_2Cu3_3O6.5_{6.5} via a torque technique in pulsed magnetic fields up to 59 T. Above an irreversibility field of ∌\sim30 T, the magnetization exhibits clear quantum oscillations with a single frequency of 540 T and a cyclotron mass of 1.76 times the free electron mass, in excellent agreement with previously observed Shubnikov-de Haas oscillations. The oscillations obey the standard Lifshitz-Kosevich formula of Fermi-liquid theory. This thermodynamic observation of quantum oscillations confirms the existence of a well-defined, close and coherent, Fermi surface in the pseudogap phase of cuprates.Comment: published versio
    • 

    corecore