19 research outputs found

    Long-term outcomes of liver transplant recipients followed up in non-transplant centres: care closer to home

    Get PDF
    Introduction: Increasing rates of liver transplantation and improved outcomes have led to greater numbers of transplant recipients followed up in non-transplant centres. Our aim was to document long-term clinical outcomes of liver transplant recipients managed in this ‘hub and spoke’ healthcare model.Methods: A retrospective analysis of all adult patients who underwent liver transplantation between 1987 and 2016, with post-transplant follow-up in two non-transplant centres in the UK (Nottingham) and Canada (Ottawa) was performed.Results: The 1-, 5-, 10- and 20-year patient survival rates were 98%, 95%, 87% and 62%, and 100%, 96%, 88% and 62% in the Nottingham and Ottawa groups, respectively (p=0.87). There were no significant differences between the two centres in 1-, 5-, 10- and 20-year cumulative incidence of death-censored graft-survival (p=0.10), end-stage renal disease (p=0.29) or de novo cancer (p=0.22). Nottingham had a lower incidence of major cardiovascular events (p=0.008).Conclusion: Adopting a new model of healthcare provides a means of delivering post-transplant patient care close to home, without compromising patient survival and long-term clinical outcomes

    Geometric and optical transformations of supramolecular host-guest amphiphiles

    No full text
    Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 30-31).Molecular self-assembly has been an area of recent interest due to its application in a variety of important contexts including drug delivery, regenerative medicine, energy applications, and others. Simultaneously, host-guest chemistry provides a robust and powerful mechanism for inducing switching on the molecular level. In this research, we demonstrate a new platform that combines molecular self-assembly of an amphiphilic chromophore guest molecule with its host molecule counterpart, CB[8] in water. We find that upon addition of CB[8] to a solution of the amphiphilic guest molecule, host-guest complexation occurs and a transition in the morphology of the observed self-assembled nanostructures occurs. Here we present the synthetic route to our amphiphilic guest molecule, in addition to the nanostructural characterization of the supramolecular nanostructures and the host-guest nanostructure by TEM, UV-Vis, and fluorescence spectra.by Cynthia Tsien Lo.S.B

    Impact of Bacterial Translocation on Sarcopenia in Patients with Decompensated Cirrhosis

    No full text
    Advanced liver disease is associated with a persistent inflammatory state, derived from abnormal bacterial translocation from the gut, which may contribute to the development of sarcopenia in cirrhosis. We aim to document the association of chronic inflammation and bacterial translocation with the presence of sarcopenia in cirrhosis. We prospectively followed cirrhotic patients aged 18–70 years with medically refractory ascites at a single tertiary care center in Toronto, Canada. The baseline data included patient demographic variables, the presence of bacterial DNA in serum/ascitic fluid, systemic inflammatory response syndrome (SIRS) status, and nutritional assessment. Thirty-one patients were enrolled, 18 (58.1%) were sarcopenic, 9 (29%) had bacterial DNA in serum and ascites fluid. The mean MELD score was 11.5 ± 4.0 (6–23). Sarcopenic and non-sarcopenic patients did not differ significantly in their baseline MELD scores, caloric intake, resting energy expenditure, the incidence of bacterial translocation, or SIRS. While sarcopenia was not linked to increased hospital admissions or death, it was strongly associated with increased episodes of acute kidney injury (3 vs. 0, p = 0.05). This pilot study did not demonstrate an association between sarcopenia and SIRS or bacterial translocation. These results should be confirmed in future larger studies, encompassing a greater number of chronic inflammation events and quantifying levels of bacterial DNA

    Impact of Bacterial Translocation on Sarcopenia in Patients with Decompensated Cirrhosis

    No full text
    Advanced liver disease is associated with a persistent inflammatory state, derived from abnormal bacterial translocation from the gut, which may contribute to the development of sarcopenia in cirrhosis. We aim to document the association of chronic inflammation and bacterial translocation with the presence of sarcopenia in cirrhosis. We prospectively followed cirrhotic patients aged 18–70 years with medically refractory ascites at a single tertiary care center in Toronto, Canada. The baseline data included patient demographic variables, the presence of bacterial DNA in serum/ascitic fluid, systemic inflammatory response syndrome (SIRS) status, and nutritional assessment. Thirty-one patients were enrolled, 18 (58.1%) were sarcopenic, 9 (29%) had bacterial DNA in serum and ascites fluid. The mean MELD score was 11.5 ± 4.0 (6–23). Sarcopenic and non-sarcopenic patients did not differ significantly in their baseline MELD scores, caloric intake, resting energy expenditure, the incidence of bacterial translocation, or SIRS. While sarcopenia was not linked to increased hospital admissions or death, it was strongly associated with increased episodes of acute kidney injury (3 vs. 0, p = 0.05). This pilot study did not demonstrate an association between sarcopenia and SIRS or bacterial translocation. These results should be confirmed in future larger studies, encompassing a greater number of chronic inflammation events and quantifying levels of bacterial DNA

    Skeletal Muscle Pathological Fat Infiltration (Myosteatosis) Is Associated with Higher Mortality in Patients with Cirrhosis

    No full text
    Myosteatosis (pathological fat accumulation in muscle) is defined by lower mean skeletal muscle radiodensity in CT. We aimed to determine the optimal cut-offs for myosteatosis in a cohort of 855 patients with cirrhosis. CT images were used to determine the skeletal muscle radiodensity expressed as Hounsfield Unit (HU). Patients with muscle radiodensity values below the lowest tertile were considered to have myosteatosis. Competing-risk analysis was performed to determine associations between muscle radiodensity and pre-transplant mortality. Muscle radiodensity less than 33 and 28 HU in males and females, respectively, were used as cut-offs to identify myosteatosis. In the univariate analysis, cirrhosis etiology, MELD score, refractory ascites, variceal bleeding, hepatic encephalopathy, sarcopenia and myosteatosis were predictors of mortality. Myosteatosis association with mortality remained significant after adjusting for confounding factors (sHR 1.47, 95% CI 1.17–1.84, p = 0.001). Patients with concurrent presence of myosteatosis and sarcopenia constituted 17% of the patient population. The cumulative incidence of mortality was the highest in patients with concomitant sarcopenia and myosteatosis (sHR 2.22, 95% CI 1.64–3.00, p < 0.001). In conclusion, myosteatosis is common in patients with cirrhosis and is associated with increased mortality. The concomitant presence of myosteatosis and sarcopenia is associated with worse outcomes

    Myosteatosis in Cirrhosis: A Review of Diagnosis, Pathophysiological Mechanisms and Potential Interventions

    No full text
    Myosteatosis, or pathological excess fat accumulation in muscle, has been widely defined as a lower mean skeletal muscle radiodensity on computed tomography (CT). It is reported in more than half of patients with cirrhosis, and preliminary studies have shown a possible association with reduced survival and increased risk of portal hypertension complications. Despite the clinical implications in cirrhosis, a standardized definition for myosteatosis has not yet been established. Currently, little data exist on the mechanisms by which excess lipid accumulates within the muscle in individuals with cirrhosis. Hyperammonemia may play an important role in the pathophysiology of myosteatosis in this setting. Insulin resistance, impaired mitochondrial oxidative phosphorylation, diminished lipid oxidation in muscle and age-related differentiation of muscle stem cells into adipocytes have been also been suggested as potential mechanisms contributing to myosteatosis. The metabolic consequence of ammonia-lowering treatments and omega-3 polyunsaturated fatty acids in reversing myosteatosis in cirrhosis remains uncertain. Factors including the population of interest, design and sample size, single/combined treatment, dosing and duration of treatment are important considerations for future trials aiming to prevent or treat myosteatosis in individuals with cirrhosis
    corecore