7 research outputs found

    TALEN-Mediated Gene Editing of HBG in Human Hematopoietic Stem Cells Leads to Therapeutic Fetal Hemoglobin Induction

    No full text
    Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia. Keywords: TALEN, hemoglobinopathy, HBG, hemoglobin, HPFH, SCD, sickle cell disease, thalassemia, gene editing, HS

    Wild-type microglia do not reverse pathology in mouse models of Rett syndrome

    No full text
    Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by mutations in the X chromosomal gene Methyl-CpG-binding Protein 2 (MECP2) (1). RTT treatment so far is symptomatic. Mecp2 disruption in mice phenocopies major features of the syndrome (2) that can be reversed upon re-expression of Mecp2 (3. It has recently been reported that transplantation of wild type (WT) bone marrow (BMT) into lethally irradiated Mecp2tm1.1Jae/y mice prevented neurologic decline and early death by restoring microglial phagocytic activity against apoptotic targets (4). Based on this report, clinical trials of BMT for patients with RTT have been initiated (5). We aimed to replicate and extend the BMT experiments in three different RTT mouse models but found that despite robust microglial engraftment, BMT from WT donors did not rescue early death or ameliorate neurologic deficits. Furthermore, early and specific genetic expression of Mecp2 in microglia did not rescue Mecp2-deficient mice. In conclusion our experiments do not support BMT as therapy for RTT
    corecore