10 research outputs found

    Legislative Documents

    No full text
    Also, variously referred to as: Senate bills; Senate documents; Senate legislative documents; legislative documents; and General Court documents

    Image_2_Variegated Transcription of the WC1 Hybrid PRR/Co-Receptor Genes by Individual γδ T Cells and Correlation With Pathogen Responsiveness.TIF

    No full text
    <p>γδ T cells have broad reactivity and actively participate in protective immunity against tumors and infectious disease-causing organisms. In γδ-high species such as ruminants and other artiodactyls many γδ T cells bear the lineage-specific markers known as WC1. WC1 molecules are scavenger receptors coded for by a multigenic array and are closely related to SCART found on murine γδ T cells and CD163 found on a variety of cells. We have previously shown that WC1 molecules are hybrid pattern recognition receptors thereby binding pathogens as well as signaling co-receptors for the γδ T cell receptor. WC1<sup>+</sup> γδ T cells can be divided into two major subpopulations differentiated by the WC1 genes they express and the pathogens to which they respond. Therefore, we hypothesize that optimal γδ T cell responses are contingent on pathogen binding to WC1 molecules, especially since we have shown that silencing WC1 results in an inability of γδ T cells from primed animals to respond to the pathogen Leptospira, a model system we have employed extensively. Despite this knowledge about the crucial role WC1 plays in γδ T cell biology, the pattern of WC1 gene expression by individual γδ T cells was not known but is critical to devise methods to engage γδ T cells for responses to specific pathogens. To address this gap, we generated 78 γδ T cell clones. qRT-PCR evaluation showed that approximately 75% of the clones had one to three WC1 genes transcribed but up to six per cell occurred. The co-transcription of WC1 genes by clones showed many combinations and some WC1 genes were transcribed by both subpopulations although there were differences in the overall pattern of WC1 genes transcription. Despite this overlap, Leptospira-responsive WC1<sup>+</sup> memory γδ T cell clones were shown to have a significantly higher propensity to express WC1 molecules that are known to bind to the pathogen.</p

    Image_4_Variegated Transcription of the WC1 Hybrid PRR/Co-Receptor Genes by Individual γδ T Cells and Correlation With Pathogen Responsiveness.tiff

    No full text
    <p>γδ T cells have broad reactivity and actively participate in protective immunity against tumors and infectious disease-causing organisms. In γδ-high species such as ruminants and other artiodactyls many γδ T cells bear the lineage-specific markers known as WC1. WC1 molecules are scavenger receptors coded for by a multigenic array and are closely related to SCART found on murine γδ T cells and CD163 found on a variety of cells. We have previously shown that WC1 molecules are hybrid pattern recognition receptors thereby binding pathogens as well as signaling co-receptors for the γδ T cell receptor. WC1<sup>+</sup> γδ T cells can be divided into two major subpopulations differentiated by the WC1 genes they express and the pathogens to which they respond. Therefore, we hypothesize that optimal γδ T cell responses are contingent on pathogen binding to WC1 molecules, especially since we have shown that silencing WC1 results in an inability of γδ T cells from primed animals to respond to the pathogen Leptospira, a model system we have employed extensively. Despite this knowledge about the crucial role WC1 plays in γδ T cell biology, the pattern of WC1 gene expression by individual γδ T cells was not known but is critical to devise methods to engage γδ T cells for responses to specific pathogens. To address this gap, we generated 78 γδ T cell clones. qRT-PCR evaluation showed that approximately 75% of the clones had one to three WC1 genes transcribed but up to six per cell occurred. The co-transcription of WC1 genes by clones showed many combinations and some WC1 genes were transcribed by both subpopulations although there were differences in the overall pattern of WC1 genes transcription. Despite this overlap, Leptospira-responsive WC1<sup>+</sup> memory γδ T cell clones were shown to have a significantly higher propensity to express WC1 molecules that are known to bind to the pathogen.</p

    Table_2_Variegated Transcription of the WC1 Hybrid PRR/Co-Receptor Genes by Individual γδ T Cells and Correlation With Pathogen Responsiveness.DOCX

    No full text
    <p>γδ T cells have broad reactivity and actively participate in protective immunity against tumors and infectious disease-causing organisms. In γδ-high species such as ruminants and other artiodactyls many γδ T cells bear the lineage-specific markers known as WC1. WC1 molecules are scavenger receptors coded for by a multigenic array and are closely related to SCART found on murine γδ T cells and CD163 found on a variety of cells. We have previously shown that WC1 molecules are hybrid pattern recognition receptors thereby binding pathogens as well as signaling co-receptors for the γδ T cell receptor. WC1<sup>+</sup> γδ T cells can be divided into two major subpopulations differentiated by the WC1 genes they express and the pathogens to which they respond. Therefore, we hypothesize that optimal γδ T cell responses are contingent on pathogen binding to WC1 molecules, especially since we have shown that silencing WC1 results in an inability of γδ T cells from primed animals to respond to the pathogen Leptospira, a model system we have employed extensively. Despite this knowledge about the crucial role WC1 plays in γδ T cell biology, the pattern of WC1 gene expression by individual γδ T cells was not known but is critical to devise methods to engage γδ T cells for responses to specific pathogens. To address this gap, we generated 78 γδ T cell clones. qRT-PCR evaluation showed that approximately 75% of the clones had one to three WC1 genes transcribed but up to six per cell occurred. The co-transcription of WC1 genes by clones showed many combinations and some WC1 genes were transcribed by both subpopulations although there were differences in the overall pattern of WC1 genes transcription. Despite this overlap, Leptospira-responsive WC1<sup>+</sup> memory γδ T cell clones were shown to have a significantly higher propensity to express WC1 molecules that are known to bind to the pathogen.</p

    Image_1_Variegated Transcription of the WC1 Hybrid PRR/Co-Receptor Genes by Individual γδ T Cells and Correlation With Pathogen Responsiveness.TIF

    No full text
    <p>γδ T cells have broad reactivity and actively participate in protective immunity against tumors and infectious disease-causing organisms. In γδ-high species such as ruminants and other artiodactyls many γδ T cells bear the lineage-specific markers known as WC1. WC1 molecules are scavenger receptors coded for by a multigenic array and are closely related to SCART found on murine γδ T cells and CD163 found on a variety of cells. We have previously shown that WC1 molecules are hybrid pattern recognition receptors thereby binding pathogens as well as signaling co-receptors for the γδ T cell receptor. WC1<sup>+</sup> γδ T cells can be divided into two major subpopulations differentiated by the WC1 genes they express and the pathogens to which they respond. Therefore, we hypothesize that optimal γδ T cell responses are contingent on pathogen binding to WC1 molecules, especially since we have shown that silencing WC1 results in an inability of γδ T cells from primed animals to respond to the pathogen Leptospira, a model system we have employed extensively. Despite this knowledge about the crucial role WC1 plays in γδ T cell biology, the pattern of WC1 gene expression by individual γδ T cells was not known but is critical to devise methods to engage γδ T cells for responses to specific pathogens. To address this gap, we generated 78 γδ T cell clones. qRT-PCR evaluation showed that approximately 75% of the clones had one to three WC1 genes transcribed but up to six per cell occurred. The co-transcription of WC1 genes by clones showed many combinations and some WC1 genes were transcribed by both subpopulations although there were differences in the overall pattern of WC1 genes transcription. Despite this overlap, Leptospira-responsive WC1<sup>+</sup> memory γδ T cell clones were shown to have a significantly higher propensity to express WC1 molecules that are known to bind to the pathogen.</p

    Assay characteristics of the chromium release assay vs. BLI assay.

    No full text
    <p>The spontaneous death, maximal killing, range, and the signal to noise (max:min) ratios measured by <sup>51</sup>Cr release and BLI are shown. Results are presented as mean ± SD of three independent experiments.</p><p>* p<0.01 by Student t test.</p

    Measurement of chromium release and luciferase activity in cells lysed by water or by 1% NP40.

    No full text
    <p>Three luciferase-transduced human cell lines (K562, UCI191 and U266) and 3 mouse cell lines (P815, YAC1, and A20) were labeled with radioactive chromium for 4 hours. The cells were lysed in water or 1% NP40 for 4 hours. (A) Chromium release in the supernatant of cells lysed in water or in 1% NP40 was determined. (B) Luciferase activity was detected by BLI in cells lysed in water or in 1% NP40 was determined. The results are represented as mean ± SD of n = 3–4 independent experiments. * p<0.001 by Wilcoxon Rank test.</p

    Comparison of cytotoxicity obtained at 4 hours by the chromium release and BLI method at higher E:T ratios.

    No full text
    <p>Luciferase-transduced the YAC1 cell line was co-cultured with mouse effector cells for 4 hours at various E:T ratios ranging from 100∶1 to 20∶1. The % specific lysis obtained by the chromium release assay (closed circles) or the BLI assay (open circles) is plotted against multiple E:T ratios. Results are represented as mean ± SD of triplicate values. One representative of 2 independent experiments is shown. The p value obtained from the statistical analysis performed permutated two-way ANOVA is shown.</p

    Comparison of cytotoxicity obtained at 2 hours by the chromium release method and BLI method.

    No full text
    <p>Luciferase-transduced human and mouse cell lines were co-cultured with human or mouse effector cells for 2 hours at various E:T ratios. The % specific lysis of the human cell lines, (A) K562, (B) U266, and (C) UCI101 obtained by the chromium release assay (closed circles) or the BLI assay (open circles) is plotted against multiple E:T ratios. The % specific lysis of the human cell lines, (D) P815, (E) YAC1, (F) EL-4, and (G) A20 obtained by the chromium release assay (closed circles) or the BLI assay (open circles) is plotted against multiple E:T ratios. Results are represented as mean ± SD of n = 3 independent experiments. The p values obtained from the statistical analysis performed by permutated two-way ANOVA are shown in each graph.</p

    Comparison of cytotoxicity obtained at 4 hours by the chromium release and BLI method.

    No full text
    <p>Luciferase-transduced human and mouse cell lines were co-cultured with human or mouse effector cells for 4 hours at various E: T ratios. The % specific lysis of the human cell lines, (A) K562, (B) U266, and (C) UCI101 obtained by the chromium release assay (closed circles) or the BLI assay (open circles) is plotted against multiple E:T ratios. The % specific lysis of the murine cell lines, (D) P815, (E) YAC1, (F) EL-4, and (G) A20 obtained by the chromium release assay (closed circles) or the BLI assay (open circles) is plotted against multiple E:T ratios. Results are represented as mean ± SD of n = 3 independent experiments. The p values obtained from the statistical analysis performed by permutated two-way ANOVA are shown in each graph.</p
    corecore