49 research outputs found

    Explaining Black-Box Models through Counterfactuals

    Full text link
    We present CounterfactualExplanations.jl: a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box models in Julia. CE explain how inputs into a model need to change to yield specific model predictions. Explanations that involve realistic and actionable changes can be used to provide AR: a set of proposed actions for individuals to change an undesirable outcome for the better. In this article, we discuss the usefulness of CE for Explainable Artificial Intelligence and demonstrate the functionality of our package. The package is straightforward to use and designed with a focus on customization and extensibility. We envision it to one day be the go-to place for explaining arbitrary predictive models in Julia through a diverse suite of counterfactual generators.Comment: 13 pages, 9 figures, originally published in The Proceedings of the JuliaCon Conferences (JCON

    One Deep Music Representation to Rule Them All? : A comparative analysis of different representation learning strategies

    Full text link
    Inspired by the success of deploying deep learning in the fields of Computer Vision and Natural Language Processing, this learning paradigm has also found its way into the field of Music Information Retrieval. In order to benefit from deep learning in an effective, but also efficient manner, deep transfer learning has become a common approach. In this approach, it is possible to reuse the output of a pre-trained neural network as the basis for a new learning task. The underlying hypothesis is that if the initial and new learning tasks show commonalities and are applied to the same type of input data (e.g. music audio), the generated deep representation of the data is also informative for the new task. Since, however, most of the networks used to generate deep representations are trained using a single initial learning source, their representation is unlikely to be informative for all possible future tasks. In this paper, we present the results of our investigation of what are the most important factors to generate deep representations for the data and learning tasks in the music domain. We conducted this investigation via an extensive empirical study that involves multiple learning sources, as well as multiple deep learning architectures with varying levels of information sharing between sources, in order to learn music representations. We then validate these representations considering multiple target datasets for evaluation. The results of our experiments yield several insights on how to approach the design of methods for learning widely deployable deep data representations in the music domain.Comment: This work has been accepted to "Neural Computing and Applications: Special Issue on Deep Learning for Music and Audio

    The Biased Journey of MSD_AUDIO.ZIP

    Full text link
    The equitable distribution of academic data is crucial for ensuring equal research opportunities, and ultimately further progress. Yet, due to the complexity of using the API for audio data that corresponds to the Million Song Dataset along with its misreporting (before 2016) and the discontinuation of this API (after 2016), access to this data has become restricted to those within certain affiliations that are connected peer-to-peer. In this paper, we delve into this issue, drawing insights from the experiences of 22 individuals who either attempted to access the data or played a role in its creation. With this, we hope to initiate more critical dialogue and more thoughtful consideration with regard to access privilege in the MIR community

    Endogenous Macrodynamics in Algorithmic Recourse

    Full text link
    Existing work on Counterfactual Explanations (CE) and Algorithmic Recourse (AR) has largely focused on single individuals in a static environment: given some estimated model, the goal is to find valid counterfactuals for an individual instance that fulfill various desiderata. The ability of such counterfactuals to handle dynamics like data and model drift remains a largely unexplored research challenge. There has also been surprisingly little work on the related question of how the actual implementation of recourse by one individual may affect other individuals. Through this work, we aim to close that gap. We first show that many of the existing methodologies can be collectively described by a generalized framework. We then argue that the existing framework does not account for a hidden external cost of recourse, that only reveals itself when studying the endogenous dynamics of recourse at the group level. Through simulation experiments involving various state-of the-art counterfactual generators and several benchmark datasets, we generate large numbers of counterfactuals and study the resulting domain and model shifts. We find that the induced shifts are substantial enough to likely impede the applicability of Algorithmic Recourse in some situations. Fortunately, we find various strategies to mitigate these concerns. Our simulation framework for studying recourse dynamics is fast and opensourced.Comment: 12 pages, 11 figures. Originally published at the 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). IEEE holds the copyrigh

    Hidden Author Bias in Book Recommendation

    Get PDF
    Collaborative filtering algorithms have the advantage of not requiring sensitive user or item information to provide recommendations. However, they still suffer from fairness related issues, like popularity bias. In this work, we argue that popularity bias often leads to other biases that are not obvious when additional user or item information is not provided to the researcher. We examine our hypothesis in the book recommendation case on a commonly used dataset with book ratings. We enrich it with author information using publicly available external sources. We find that popular books are mainly written by US citizens in the dataset, and that these books tend to be recommended disproportionally by popular collaborative filtering algorithms compared to the users' profiles. We conclude that the societal implications of popularity bias should be further examined by the scholar community

    Some Advice for Psychologists Who Want to Work With Computer Scientists on Big Data

    Get PDF
    This article is based on conversations from the project “Big Data in Psychological Assessment” (BDPA) funded by the European Union, which was initiated because of the advances in data science and artificial intelligence that offer tremendous opportunities for personnel assessment practice in handling and interpreting this kind of data. We argue that psychologists and computer scientists can benefit from interdisciplinary collaboration. This article aims to inform psychologists who are interested in working with computer scientists about the potentials of interdisciplinary collaboration, as well as the challenges such as differing terminologies, foci of interest, data quality standards, approaches to data analyses, and diverging publication practices. Finally, we provide recommendations preparing psychologists who want to engage in collaborations with computer scientists. We argue that psychologists should proactively approach computer scientists, learn computer scientific fundamentals, appreciate that research interests are likely to converge, and prepare novice psychologists for a data-oriented scientific future

    Some Advice for Psychologists Who Want to Work with Computer Scientists on Big Data

    Get PDF
    This article is based on conversations from the project “Big Data in Psychological Assessment” (BDPA) funded by the European Union, which was initiated because of the advances in data science and artificial intelligence that offer tremendous opportunities for personnel assessment practice in handling and interpreting this kind of data. We argue that psychologists and computer scientists can benefit from interdiscip
    corecore