257 research outputs found
Spectral estimates for two-dimensional Schroedinger operators with application to quantum layers
A logarithmic type Lieb-Thirring inequality for two-dimensional Schroedinger
operators is established. The result is applied to prove spectral estimates on
trapped modes in quantum layers
On a problem of Lions concerning real interpolation spaces. The quasi-Banach case
We prove that, under a mild condition on a couple (A0;A1) of quasi-Banach spaces, all real interpolation spaces (A0;A1)θ,p with 0 < θ < 1 and 0 < p ≤ ∞ are different from each other. In the Banach case and for 1 ≤ p ≤ ∞ this was shown by Janson, Nilsson, Peetre and Zafran, thus solving an old problem posed by J.-L. Lions. Moreover, we give an application to certain spaces which are important objects in Operator Theory and which consist of bounded linear operators whose approximation numbers belong to Lorentz sequence spaces
On the Lieb-Thirring constants L_gamma,1 for gamma geq 1/2
Let denote the negative eigenvalues of the one-dimensional
Schr\"odinger operator on . We prove the inequality \sum_i|E_i(H)|^\gamma\leq L_{\gamma,1}\int_{\Bbb
R} V^{\gamma+1/2}(x)dx, (1) for the "limit" case This will imply
improved estimates for the best constants in (1), as
$1/2<\gamma<3/2.Comment: AMS-LATEX, 15 page
A simple proof of Hardy-Lieb-Thirring inequalities
We give a short and unified proof of Hardy-Lieb-Thirring inequalities for
moments of eigenvalues of fractional Schroedinger operators. The proof covers
the optimal parameter range. It is based on a recent inequality by Solovej,
Soerensen, and Spitzer. Moreover, we prove that any non-magnetic Lieb-Thirring
inequality implies a magnetic Lieb-Thirring inequality (with possibly a larger
constant).Comment: 12 page
Lieb-Thirring inequalities for geometrically induced bound states
We prove new inequalities of the Lieb-Thirring type on the eigenvalues of
Schr\"odinger operators in wave guides with local perturbations. The estimates
are optimal in the weak-coupling case. To illustrate their applications, we
consider, in particular, a straight strip and a straight circular tube with
either mixed boundary conditions or boundary deformations.Comment: LaTeX2e, 14 page
Towards a unified theory of Sobolev inequalities
We discuss our work on pointwise inequalities for the gradient which are
connected with the isoperimetric profile associated to a given geometry. We
show how they can be used to unify certain aspects of the theory of Sobolev
inequalities. In particular, we discuss our recent papers on fractional order
inequalities, Coulhon type inequalities, transference and dimensionless
inequalities and our forthcoming work on sharp higher order Sobolev
inequalities that can be obtained by iteration.Comment: 39 pages, made some changes to section 1
Concentration analysis and cocompactness
Loss of compactness that occurs in may significant PDE settings can be
expressed in a well-structured form of profile decomposition for sequences.
Profile decompositions are formulated in relation to a triplet , where
and are Banach spaces, , and is, typically, a
set of surjective isometries on both and . A profile decomposition is a
representation of a bounded sequence in as a sum of elementary
concentrations of the form , , , and a remainder that
vanishes in . A necessary requirement for is, therefore, that any
sequence in that develops no -concentrations has a subsequence
convergent in the norm of . An imbedding with this
property is called -cocompact, a property weaker than, but related to,
compactness. We survey known cocompact imbeddings and their role in profile
decompositions
- …