3 research outputs found

    CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis

    Get PDF
    Basal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells. CIP2A was dispensable for normal mammary gland development and for unperturbed mitosis, but selectively essential for mitotic progression of DNA damaged cells. A direct interaction between CIP2A and a DNA repair scaffold protein TopBP1 was identified, and CIP2A inhibition resulted in enhanced DNA damage-induced TopBP1 and RAD51 recruitment to chromatin in mammary epithelial cells. In addition to its role in tumor initiation, and survival of BRCA-deficient cells, CIP2A also drove proliferative MYC and E2F1 signaling in basal-like triple-negative breast cancer (BL-TNBC) cells. Clinically, high CIP2A expression was associated with poor patient prognosis in BL-TNBCs but not in other breast cancer subtypes. Small-molecule reactivators of PP2A (SMAP) inhibited CIP2A transcription, phenocopied the CIP2A-deficient DNA damage response (DDR), and inhibited growth of patient-derived BLBC xenograft. In summary, these results demonstrate that CIP2A directly interacts with TopBP1 and coordinates DNAdamage-induced mitotic checkpoint and proliferation, thereby driving BLBC initiation and progression. SMAPs could serve as a surrogate therapeutic strategy to inhibit the oncogenic activity of CIP2A in BLBCs. Significance: These results identify CIP2A as a nongenetic driver and therapeutic target in basal-like breast cancer that regulates DNA damage-induced G2-M checkpoint and proliferative signaling.Peer reviewe

    Ovarian Cancers with Low CIP2A Tumor Expression Constitute an APR-246-Sensitive Disease Subtype

    No full text
    Publisher Copyright: © 2022 American Association for Cancer Research.Identification of ovarian cancer patient subpopulations with increased sensitivity to targeted therapies could offer significant clinical benefit. We report that 22% of the high-grade ovarian cancer tumors at diagnosis express CIP2A oncoprotein at low levels. Furthermore, regardless of their significantly lower likelihood of disease relapse after standard chemotherapy, a portion of relapsed tumors retain their CIP2A-deficient phenotype. Through a screen for therapeutics that would preferentially kill CIP2A-deficient ovarian cancer cells, we identified reactive oxygen species inducer APR-246, tested previously in ovarian cancer clinical trials. Consistent with CIP2A-deficient ovarian cancer subtype in humans, CIP2A is dispensable for development of MISIIR-Tag-driven mouse ovarian cancer tumors. Nevertheless, CIP2A-null ovarian cancer tumor cells from MISIIR-Tag mice displayed APR-246 hypersensitivity both in vitro and in vivo. Mechanistically, the lack of CIP2A expression hypersensitizes the ovarian cancer cells to APR-246 by inhibition of NF-ÎșB activity. Accordingly, combination of APR-246 and NF-kB inhibitor compounds strongly synergized in killing of CIP2A-positive ovarian cancer cells. Collectively, the results warrant consideration of clinical testing of APR-246 for CIP2A-deficient ovarian cancer tumor subtype patients. Results also reveal CIP2A as a candidate APR-246 combination therapy target for ovarian cancer.Peer reviewe
    corecore