48 research outputs found

    Molecular diversity of phospholipase D in angiosperms

    Get PDF
    BACKGROUND: The phospholipase D (PLD) family has been identified in plants by recent molecular studies, fostered by the emerging importance of plant PLDs in stress physiology and signal transduction. However, the presence of multiple isoforms limits the power of conventional biochemical and pharmacological approaches, and calls for a wider application of genetic methodology. RESULTS: Taking advantage of sequence data available in public databases, we attempted to provide a prerequisite for such an approach. We made a complete inventory of the Arabidopsis thaliana PLD family, which was found to comprise 12 distinct genes. The current nomenclature of Arabidopsis PLDs was refined and expanded to include five newly described genes. To assess the degree of plant PLD diversity beyond Arabidopsis we explored data from rice (including the genome draft by Monsanto) as well as cDNA and EST sequences from several other plants. Our analysis revealed two major PLD subfamilies in plants. The first, designated C2-PLD, is characterised by presence of the C2 domain and comprises previously known plant PLDs as well as new isoforms with possibly unusual features-catalytically inactive or independent on Ca(2+). The second subfamily (denoted PXPH-PLD) is novel in plants but is related to animal and fungal enzymes possessing the PX and PH domains. CONCLUSIONS: The evolutionary dynamics, and inter-specific diversity, of plant PLDs inferred from our phylogenetic analysis, call for more plant species to be employed in PLD research. This will enable us to obtain generally valid conclusions

    Small G-proteins in Arabidopsis thaliana

    No full text

    Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression

    No full text
    ¿ The closely related proteins AtFH4 and AtFH8 represent the group Ie clade of Arabidopsis formin homologues. The subcellular localization of these proteins and their ability to affect the actin cytoskeleton were examined. ¿ AtFH4 protein activity was identified using fluorimetric techniques. Interactions between Arabidopsis profilin isoforms and AtFH4 were assayed in vitro and in vivo using pull-down assays and yeast-2-hybrid. The subcellular localization of group Ie formins was observed with indirect immunofluorescence (AtFH4) and an ethanol-inducible green fluorescent protein (GFP) fusion construct (AtFH8). ¿ AtFH4 protein affected actin dynamics in vitro, and yeast-2-hybrid assays suggested isoform-specific interactions with the actin-binding protein profilin in vivo. Indirect immunofluorescence showed that AtFH4 localized specifically to the cell membrane at borders between adjoining cells. Expression of an AtFH8 fusion protein resulted in GFP localization to cell membrane zones, similar to AtFH4. Furthermore, aberrant expression of AtFH8 resulted in the inhibition of root hair elongation. ¿ Taken together, these data suggest that the group Ie formins act with profilin to regulate actin polymerization at specific sites associated with the cell membran

    Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway

    No full text
    The yeast high osmolarity glycerol (HOG) signaling pathway can be activated by either of the two upstream pathways, termed the SHO1 and SLN1 branches. When stimulated by high osmolarity, the SHO1 branch activates an MAP kinase module composed of the Ste11 MAPKKK, the Pbs2 MAPKK, and the Hog1 MAPK. To investigate how osmostress activates this MAPK module, we isolated both gain-of-function and loss-of-function alleles in four key genes involved in the SHO1 branch, namely SHO1, CDC42, STE50, and STE11. These mutants were characterized using an HOG-dependent reporter gene, 8xCRE-lacZ. We found that Cdc42, in addition to binding and activating the PAK-like kinases Ste20 and Cla4, binds to the Ste11–Ste50 complex to bring activated Ste20/Cla4 to their substrate Ste11. Activated Ste11 and its HOG pathway-specific substrate, Pbs2, are brought together by Sho1; the Ste11–Ste50 complex binds to the cytoplasmic domain of Sho1, to which Pbs2 also binds. Thus, Cdc42, Ste50, and Sho1 act as adaptor proteins that control the flow of the osmostress signal from Ste20/Cla4 to Ste11, then to Pbs2
    corecore