23 research outputs found

    Optimization of video capturing and tone mapping in video camera systems

    Get PDF
    Image enhancement techniques are widely employed in many areas of professional and consumer imaging, machine vision and computational imaging. Image enhancement techniques used in surveillance video cameras are complex systems involving controllable lenses, sensors and advanced signal processing. In surveillance, a high output image quality with very robust and stable operation under difficult imaging conditions are essential, combined with automatic, intelligent camera behavior without user intervention. The key problem discussed in this thesis is to ensure this high quality under all conditions, which specifically addresses the discrepancy of the dynamic range of input scenes and displays. For example, typical challenges are High Dynamic Range (HDR) and low-dynamic range scenes with strong light-dark differences and overall poor visibility of details, respectively. The detailed problem statement is as follows: (1) performing correct and stable image acquisition for video cameras in variable dynamic range environments, and (2) finding the best image processing algorithms to maximize the visualization of all image details without introducing image distortions. Additionally, the solutions should satisfy complexity and cost requirements of typical video surveillance cameras. For image acquisition, we develop optimal image exposure algorithms that use a controlled lens, sensor integration time and camera gain, to maximize SNR. For faster and more stable control of the camera exposure system, we remove nonlinear tone-mapping steps from the level control loop and we derive a parallel control strategy that prevents control delays and compensates for the non-linearity and unknown transfer characteristics of the used lenses. For HDR imaging we adopt exposure bracketing that merges short and long exposed images. To solve the involved non-linear sensor distortions, we apply a non-linear correction function to the distorted sensor signal, implementing a second-order polynomial with coefficients adaptively estimated from the signal itself. The result is a good, dynamically controlled match between the long- and short-exposed image. The robustness of this technique is improved for fluorescent light conditions, preventing serious distortions by luminance flickering and color errors. To prevent image degradation we propose both fluorescent light detection and fluorescence locking, based on measurements of the sensor signal intensity and color errors in the short-exposed image. The use of various filtering steps increases the detector robustness and reliability for scenes with motion and the appearance of other light sources. In the alternative algorithm principle of fluorescence locking, we ensure that light integrated during the short exposure time has a correct intensity and color by synchronizing the exposure measurement to the mains frequency. The second area of research is to maximize visualization of all image details. This is achieved by both global and local tone mapping functions. The largest problem of Global Tone Mapping Functions (GTMF) is that they often significantly deteriorate the image contrast. We have developed a new GTMF and illustrate, both analytically and perceptually, that it exhibits only a limited amount of compression, compared to conventional solutions. Our algorithm splits GTMF into two tasks: (1) compressing HDR images (DRC transfer function) and (2) enhancing the (global) image contrast (CHRE transfer function). The DRC subsystem adapts the HDR video signal to the remainder of the system, which can handle only a fraction of the original dynamic range. Our main contribution is a novel DRC function shape which is adaptive to the image, so that details in the dark image parts are enhanced simultaneously while only moderately compressing details in the bright areas. Also, the DRC function shape is well matched with the sensor noise characteristics in order to limit the noise amplification. Furthermore, we show that the image quality can be significantly improved in DRC compression if a local contrast preservation step is included. The second part of GTMF is a CHRE subsystem that fine-tunes and redistributes the luminance (and color) signal in the image, to optimize global contrast of the scene. The contribution of the proposed CHRE processing is that unlike standard histogram equalization, it can preserve details in statistically unpopulated but visually relevant luminance regions. One of the important cornerstones of the GTMF is that both DRC and CHRE algorithms are performed in the perceptually uniform space and optimized for the salient regions obtained by the improved salient-region detector, to maximize the relevant information transfer to the HVS. The proposed GTMF solution offers a good processing quality, but cannot sufficiently preserve local contrast for extreme HDR signals and it gives limited improvement low-contrast scenes. The local contrast improvement is based on the Locally Adaptive Contrast Enhancement (LACE) algorithm. We contribute by using multi-band frequency decomposition, to set up the complete enhancement system. Four key problems occur with real-time LACE processing: (1) "halo" artifacts, (2) clipping of the enhancement signal, (3) noise degradation and (4) the overall system complexity. "Halo" artifacts are eliminated by a new contrast gain specification using local energy and contrast measurements. This solution has a low complexity and offers excellent performance in terms of higher contrast and visually appealing performance. Algorithms preventing clipping of the output signal and reducing noise amplification give a further enhancement. We have added a supplementary discussion on executing LACE in the logarithmic domain, where we have derived a new contrast gain function solving LACE problems efficiently. For the best results, we have found that LACE processing should be performed in the logarithmic domain for standard and HDR images, and in the linear domain for low-contrast images. Finally, the complexity of the contrast gain calculation is reduced by a new local energy metric, which can be calculated efficiently in a 2D-separable fashion. Besides the complexity benefit, the proposed energy metric gives better performance compared to the conventional metrics. The conclusions of our work are summarized as follows. For acquisition, we need to combine an optimal exposure algorithm, giving both improved dynamic performance and maximum image contrast/SNR, with robust exposure bracketing that can handle difficult conditions such as fluorescent lighting. For optimizing visibility of details in the scene, we have split the GTMF in two parts, DRC and CHRE, so that a controlled optimization can be performed offering less contrast compression and detail loss than in the conventional case. Local contrast is enhanced with the known LACE algorithm, but the performance is significantly improved by individually addressing "halo" artifacts, signal clipping and noise degradation. We provide artifact reduction by new contrast gain function based on local energy, contrast measurements and noise estimation. Besides the above arguments, we have contributed feasible performance metrics and listed ample practical evidence of the real-time implementation of our algorithms in FPGAs and ASICs, used in commercially available surveillance cameras, which obtained awards for their image quality

    Tone-mapping functions and multiple-exposure techniques for high dynamic-range images

    Get PDF
    For real-time imaging with digital video cameras and high-quality with TV display systems, good tonal rendition of video is important to ensure high visual comfort for the user. Except local contrast improvements, High Dynamic Range (HDR) scenes require adaptive gradation correction (tone-mapping function), which should enable good visualization of details at lower brightness. We discuss how to construct and control improved tone-mapping functions that enhance visibility of image details in the dark regions while not excessively compressing the image in the bright image parts. The result of this method is a 21-dB expansion of the dynamic range thanks to improved SNR by using multiple- exposure techniques. This new algorithm was successfully evaluated in HW and outperforms the existing algorithms with 11 dB. The new scheme can be successfully applied to cameras and TV systems to improve their contrast

    Adaptive tone-mapping transfer functions for high dynamic range video cameras

    Get PDF
    For real-time imaging with digital video cameras, good tonal rendition of video is important to ensure high visual comfort for the user. Except local contrast improvements, high dynamic range (HDR) scenes require adaptive gradation correction (tone-mapping curve) that should enable good visualization of details at lower brightness. We discuss how to construct and control optimal tone mapping curves, which enhance visibility of image details in the dark regions while not excessively compressing the image in the bright image parts. The result of this method is a 21 dB expansion of the dynamic range. The new algorithm was successfully evaluated in HW and is suited for any video system performing HDR video compression

    Background estimation and adaptation model with light-change removal for heavily cown-sampled video surveillance signals

    Get PDF
    This paper describes a background-subtraction system with light change-detection which works on a luminance QCIF-size video signal for surveillance applications. The new proposed pixel background model is controlled by a statistical threshold and is robust for cluttered background and small object motions. Moreover, (or light-change detection, we introduce temporal prediction of pixel values to estimate trends while quickly adapting to scene changes to facilitate a very sensitive detection of moving targets. Experiments show that a local contrast enhancement applied prior to down-sampling improves detection sensitivity, arid combined with the shifted sealed difference and me Wronskian determinant operators provides the best background/foreground detectio

    Optimization of video capturing and tone mapping in video camera systems

    No full text
    Image enhancement techniques are widely employed in many areas of professional and consumer imaging, machine vision and computational imaging. Image enhancement techniques used in surveillance video cameras are complex systems involving controllable lenses, sensors and advanced signal processing. In surveillance, a high output image quality with very robust and stable operation under difficult imaging conditions are essential, combined with automatic, intelligent camera behavior without user intervention. The key problem discussed in this thesis is to ensure this high quality under all conditions, which specifically addresses the discrepancy of the dynamic range of input scenes and displays. For example, typical challenges are High Dynamic Range (HDR) and low-dynamic range scenes with strong light-dark differences and overall poor visibility of details, respectively. The detailed problem statement is as follows: (1) performing correct and stable image acquisition for video cameras in variable dynamic range environments, and (2) finding the best image processing algorithms to maximize the visualization of all image details without introducing image distortions. Additionally, the solutions should satisfy complexity and cost requirements of typical video surveillance cameras. For image acquisition, we develop optimal image exposure algorithms that use a controlled lens, sensor integration time and camera gain, to maximize SNR. For faster and more stable control of the camera exposure system, we remove nonlinear tone-mapping steps from the level control loop and we derive a parallel control strategy that prevents control delays and compensates for the non-linearity and unknown transfer characteristics of the used lenses. For HDR imaging we adopt exposure bracketing that merges short and long exposed images. To solve the involved non-linear sensor distortions, we apply a non-linear correction function to the distorted sensor signal, implementing a second-order polynomial with coefficients adaptively estimated from the signal itself. The result is a good, dynamically controlled match between the long- and short-exposed image. The robustness of this technique is improved for fluorescent light conditions, preventing serious distortions by luminance flickering and color errors. To prevent image degradation we propose both fluorescent light detection and fluorescence locking, based on measurements of the sensor signal intensity and color errors in the short-exposed image. The use of various filtering steps increases the detector robustness and reliability for scenes with motion and the appearance of other light sources. In the alternative algorithm principle of fluorescence locking, we ensure that light integrated during the short exposure time has a correct intensity and color by synchronizing the exposure measurement to the mains frequency. The second area of research is to maximize visualization of all image details. This is achieved by both global and local tone mapping functions. The largest problem of Global Tone Mapping Functions (GTMF) is that they often significantly deteriorate the image contrast. We have developed a new GTMF and illustrate, both analytically and perceptually, that it exhibits only a limited amount of compression, compared to conventional solutions. Our algorithm splits GTMF into two tasks: (1) compressing HDR images (DRC transfer function) and (2) enhancing the (global) image contrast (CHRE transfer function). The DRC subsystem adapts the HDR video signal to the remainder of the system, which can handle only a fraction of the original dynamic range. Our main contribution is a novel DRC function shape which is adaptive to the image, so that details in the dark image parts are enhanced simultaneously while only moderately compressing details in the bright areas. Also, the DRC function shape is well matched with the sensor noise characteristics in order to limit the noise amplification. Furthermore, we show that the image quality can be significantly improved in DRC compression if a local contrast preservation step is included. The second part of GTMF is a CHRE subsystem that fine-tunes and redistributes the luminance (and color) signal in the image, to optimize global contrast of the scene. The contribution of the proposed CHRE processing is that unlike standard histogram equalization, it can preserve details in statistically unpopulated but visually relevant luminance regions. One of the important cornerstones of the GTMF is that both DRC and CHRE algorithms are performed in the perceptually uniform space and optimized for the salient regions obtained by the improved salient-region detector, to maximize the relevant information transfer to the HVS. The proposed GTMF solution offers a good processing quality, but cannot sufficiently preserve local contrast for extreme HDR signals and it gives limited improvement low-contrast scenes. The local contrast improvement is based on the Locally Adaptive Contrast Enhancement (LACE) algorithm. We contribute by using multi-band frequency decomposition, to set up the complete enhancement system. Four key problems occur with real-time LACE processing: (1) "halo" artifacts, (2) clipping of the enhancement signal, (3) noise degradation and (4) the overall system complexity. "Halo" artifacts are eliminated by a new contrast gain specification using local energy and contrast measurements. This solution has a low complexity and offers excellent performance in terms of higher contrast and visually appealing performance. Algorithms preventing clipping of the output signal and reducing noise amplification give a further enhancement. We have added a supplementary discussion on executing LACE in the logarithmic domain, where we have derived a new contrast gain function solving LACE problems efficiently. For the best results, we have found that LACE processing should be performed in the logarithmic domain for standard and HDR images, and in the linear domain for low-contrast images. Finally, the complexity of the contrast gain calculation is reduced by a new local energy metric, which can be calculated efficiently in a 2D-separable fashion. Besides the complexity benefit, the proposed energy metric gives better performance compared to the conventional metrics. The conclusions of our work are summarized as follows. For acquisition, we need to combine an optimal exposure algorithm, giving both improved dynamic performance and maximum image contrast/SNR, with robust exposure bracketing that can handle difficult conditions such as fluorescent lighting. For optimizing visibility of details in the scene, we have split the GTMF in two parts, DRC and CHRE, so that a controlled optimization can be performed offering less contrast compression and detail loss than in the conventional case. Local contrast is enhanced with the known LACE algorithm, but the performance is significantly improved by individually addressing "halo" artifacts, signal clipping and noise degradation. We provide artifact reduction by new contrast gain function based on local energy, contrast measurements and noise estimation. Besides the above arguments, we have contributed feasible performance metrics and listed ample practical evidence of the real-time implementation of our algorithms in FPGAs and ASICs, used in commercially available surveillance cameras, which obtained awards for their image quality

    Sound intensity as a function of sound insulation partition

    No full text
    In the modern engineering practice, the sound insulation of the partitions is the synthesis of the theory and of the experience acquired in the procedure of the field and of the laboratory measurement. The science and research public treat the sound insulation in the context of the emission and propagation of the acoustic energy in the media with the different acoustics impedance. In this paper, starting from the essence of physical concept of the intensity as the energy vector, the authors get down to defining the sound insulation, influential parameter and real partition oscillations

    Improved embedded non-linear processing of video for camera surveillance

    No full text
    For a real time imaging in surveillance applications, image fidelity is of primary importance to ensure customer confidence. The fidelity is obtained amongst others via dynamic range expansion and video signal enhancement. The dynamic range of the signal needs adaptation, because the sensor signal has a much larger range than the usual CRT display. The signal enhancement should accommodate for the widely varying light conditions and user scenarios of the equipment. This paper proposes a new system to combine a dynamic range and enhancement processing that offers a strongly improved picture quality for surveillance applications. The key to our solution is that we use Non-Linear Processing (NLP) with a so-called Constrained Histogram Range Equalization (CHRE). The NLP transforms the digitized high-dynamic luminance sensor signal such that details of the low-luminance parts are enhanced, while avoiding losses in high-luminance areas. The CHRE technique enhances visibility of the global contrast for the camera signal without too much loss in the statistically less relevant areas. An additional advantage is that the new scheme is adaptable and allows the concatenation of further enhancement techniques without sacrificing the obtained picture quality improvement

    Image Enhancement circuit using non-linear processing curve and constrained histogram range equalization

    No full text
    For real-time imaging in surveillance applications, image fidelity is of primary importance to ensure customer confidence. The obtained image fidelity is a result from amongst others dynamic range expansion and video signal enhancement. The dynamic range of the signal needs adaptation, because the sensor signal has a much larger range than the standard CRT display. The signal enhancement should accommodate for the widely varying light and scene conditions and user scenarios of the equipment. This paper proposes a new system to combine dynamic range and enhancement processing, offering a strongly improved picture quality for surveillance applications. The key to our solution is that we use Non-Linear Processing (NLP) with a so-called Constrained Histogram Range Equalization (CHRE). The NLP transforms the digitized high-dynamic luminance sensor signal such that details of the low-luminance parts are enhanced, while avoiding detail losses in the high-luminance areas. The CHRE technique enhances visibility of the global contrast for the camera signal without significant information loss in the statistically less relevant areas. Evaluations of this proposal have shown clear improvements of the perceptual image quality. An additional advantage is that the new scheme is adaptable and allows the concatenation of further enhancement techniques without sacrificing the obtained picture quality improvement

    Determination of absorption characteristic of materials on basis of sound intensity measurement

    No full text
    The coefficient of the acoustic absorption of the materials can be determined using two standard methods : the standing wave method and the reverberation room method. In this paper, starting from the fact that the sound intensity as vector quantity describes, beside the amount of the sound energy its direction as well and that intensity vector distribution on the floor of the rectangular rooms is rather uniform, a procedure of the absorption characteristics determination of the absorber specimen by measuring of the sound intensity is suggested. The comparative results of the absorption coefficient determination of the glass wool, obtained by reverberation room method and suggested procedure, are given. The first results point out to the possibility of the absorbed energy determination in the rectangular parallelepiped rooms, using suggested procedure on the basis of the sound intensity measurement
    corecore