569 research outputs found

    Mafic alkaline metasomatism in the lithosphere underneath East Serbia: evidence from the study of xenoliths and the host alkali basalts

    Get PDF
    Effects of mafic alkaline metasomatism have been investigated by a combined study of the East Serbian mantle xenoliths and their host alkaline rocks. Fertile xenoliths and tiny mineral assemblages found in depleted xenoliths have been investigated. Fertile lithologies are represented by clinopyroxene (cpx)-rich lherzolite and spinel (sp)-rich olivine websterite containing Ti–Al-rich Cr-augite, Fe-rich olivine, Fe–Al-rich orthopyroxene and Al-rich spinel. Depleted xenoliths, which are the predominant lithology in the suite of East Serbian xenoliths, are harzburgite, cpx-poor lherzolite and rare Mg-rich dunite. They contain small-scale assemblages occurring as pocket-like, symplectitic or irregular, deformation-assisted accumulations of metasomatic phases, generally composed of Ti–Al- and incompatible element-rich Cr-diopside, Cr–Fe–Ti-rich spinel, altered glass, olivine, apatite, ilmenite, carbonate, feldspar, and a high-TiO2 (c. 11 wt%) phlogopite. The fertile xenoliths are too rich in Al, Ca and Fe to simply represent undepleted mantle. By contrast, their composition can be reproduced by the addition of 5–20 wt% of a basanitic melt to refractory mantle. However, textural relationships found in tiny mineral assemblages inside depleted xenoliths imply the following reaction: opx+sp1 (primary mantle Cr-spinel) ±phlogopite+Si-poor alkaline melt=Ti–Al-cpx+sp2 (metasomatic Ti-rich spinel)±ol±other minor phases. Inversion modelling, performed on the least contaminated and most isotopically uniform host basanites (87Sr/86Sr=c. 0.7031; 143Nd/144Nd=c. 0.5129), implies a source that was enriched in highly and moderately incompatible elements (c. 35–40× chondrite for U–Th–Nb–Ta, 2× chondrite for heavy rare earth elements (HREE), made up of clinopyroxene, carbonate (c. 5%), and traces of ilmenite (c. 1%) and apatite (c. 0.05%). A schematic model involves: first, percolation of CO2- and H2O-rich fluids and precipitation of metasomatic hydrous minerals; and, second, the subsequent breakdown of these hydrous minerals due to the further uplift of hot asthenospheric mantle. This model links intraplate alkaline magmatism to lithospheric mantle sources enriched by sublithospheric melts at some time in the past

    YIELD AND YIELD COMPONENTS ON SOME WHEAT VARIETIES GROWN IN ALEKSINAC REGION

    Get PDF
    Yield and yield components of 5 wheat varieties (Kruna, Toplica, Zvezdana, Etida, Angelina) in Aleksinac region (Serbia) were analysed. The experiment was performed in randomized block design in 3 replications on the experimental field in area of Aleksinac city. The results showed relatively high yields in all varieties. The general average yield was 6140 kg ha-1. The highest average yield varied from 6858 kg ha-1 in cultivar Zvezdana to 5050 kg ha-1 in Toplica. The cultivar Kruna showed lowest number of productive stems per square meter – 572, and largest number in Zvezdana and Angelina, with an average of 658 and 641, respectively. Average longest spike was found in variety Angelina 12.4 cm, and shortest in Toplica (9.8 cm). The average number of spikelets per spike for all cultivars was 19.4. Cultivar Angelina showed biggest number (21.1), and Kruna smallest number (17.9). The biggest number of grains per spike was obtained in cultivar Etida (54.8), and lowest in Zvezdana (51.4). During the examination, the highest average value for hectoliter weight is obtained in variety Zvezdana (78.3 kg hl-1), and lowest in Toplica (75.4 kg hl-1). From the data on yield and yield components, it can be concluded that all tested varieties can be grown in the region of Aleksinac, with preference to varieties Zvezdana and Etida

    Magnetic penetration depth in the presence of a spin-density wave in multiband superconductors at zero temperature

    Full text link
    We present a theoretical description of the London penetration depth of a multi-band superconductor in the case when both superconducting and spin-density wave orders coexist. We focus on clean systems and zero temperature to emphasize the effect of the two competing orders. Our calculation shows that the supefluid density closely follows the evolution of the superconducting order parameter as doping is increased, saturating to a BCS value in the pure superconducting state. Furthermore, we predict a strong anisotropic in-pane penetration depth induced by the spin-density wave order.Comment: 7 pages, 4 figure

    Spin-1/2 particles moving on a 2D lattice with nearest-neighbor interactions can realize an autonomous quantum computer

    Full text link
    What is the simplest Hamiltonian which can implement quantum computation without requiring any control operations during the computation process? In a previous paper we have constructed a 10-local finite-range interaction among qubits on a 2D lattice having this property. Here we show that pair-interactions among qutrits on a 2D lattice are sufficient, too, and can also implement an ergodic computer where the result can be read out from the time average state after some post-selection with high success probability. Two of the 3 qutrit states are given by the two levels of a spin-1/2 particle located at a specific lattice site, the third state is its absence. Usual hopping terms together with an attractive force among adjacent particles induce a coupled quantum walk where the particle spins are subjected to spatially inhomogeneous interactions implementing holonomic quantum computing. The holonomic method ensures that the implemented circuit does not depend on the time needed for the walk. Even though the implementation of the required type of spin-spin interactions is currently unclear, the model shows that quite simple Hamiltonians are powerful enough to allow for universal quantum computing in a closed physical system.Comment: More detailed explanations including description of a programmable version. 44 pages, 12 figures, latex. To appear in PR

    Proper time and Minkowski structure on causal graphs

    Get PDF
    For causal graphs we propose a definition of proper time which for small scales is based on the concept of volume, while for large scales the usual definition of length is applied. The scale where the change from "volume" to "length" occurs is related to the size of a dynamical clock and defines a natural cut-off for this type of clock. By changing the cut-off volume we may probe the geometry of the causal graph on different scales and therey define a continuum limit. This provides an alternative to the standard coarse graining procedures. For regular causal lattice (like e.g. the 2-dim. light-cone lattice) this concept can be proven to lead to a Minkowski structure. An illustrative example of this approach is provided by the breather solutions of the Sine-Gordon model on a 2-dimensional light-cone lattice.Comment: 15 pages, 4 figure

    The Local Time Distribution of a Particle Diffusing on a Graph

    Full text link
    We study the local time distribution of a Brownian particle diffusing along the links on a graph. In particular, we derive an analytic expression of its Laplace transform in terms of the Green's function on the graph. We show that the asymptotic behavior of this distribution has non-Gaussian tails characterized by a nontrivial large deviation function.Comment: 8 pages, two figures (included

    Theory of Andreev reflection in a two-orbital model of iron-pnictide superconductors

    Full text link
    A recently developed theory for the problem of Andreev reflection between a normal metal (N) and a multiband superconductor (MBS) assumes that the incident wave from the normal metal is coherently transmitted through several bands inside the superconductor. Such splitting of the probability amplitude into several channels is the analogue of a quantum waveguide. Thus, the appropriate matching conditions for the wave function at the N/MBS interface are derived from an extension of quantum waveguide theory. Interference effects between the transmitted waves inside the superconductor manifest themselves in the conductance. We provide results for a FeAs superconductor, in the framework of a recently proposed effective two-band model and two recently proposed gap symmetries: in the sign-reversed s-wave (Δcos(kx)cos(ky)\Delta\cos(k_x)\cos(k_y)) scenario resonant transmission through surface Andreev bound states (ABS) at nonzero energy is found as well as destructive interference effects that produce zeros in the conductance; in the extended s-wave (Δ[cos(kx)+cos(ky)]\Delta[\cos(k_x)+\cos(k_y)]) scenario no ABS at finite energy are found.Comment: 4 pages, 5 figure
    corecore