62 research outputs found

    Z' Physics and Supersymmetry

    Full text link
    We review the status of heavy neutral gauge bosons, Z', with emphasis on constraints that arise in supersymmetric models, especially those motivated from superstring compactifications. We first summarize the current phenomenological constraints and the prospects for Z' detection and diagnostics at the LHC and NLC. After elaborating on the status and (lack of) predictive power for general models with an additional Z', we concentrate on motivations and successes for Z' physics in supersymmetric theories in general and in a class of superstring models in particular. We review phenomenologically viable scenarios with the Z' mass in the electroweak or in the intermediate scale region.Comment: 30 pages. To appear in Perspectives in Supersymmetry, World Scientific, ed. G. L. Kan

    HERA prospects on Compositeness and New Vector Bosons

    Get PDF
    The absence of deviations from the Standard Model for the differential cross section dσ/dQ2{d\sigma}/{dQ^2} at HERA is used to set limits on electron quark compositeness scale and on new vector bosons, especially the hadrophilic one recently introduced as a possible explanation for LEP/SLC and CDF anomalies.Comment: Latex file, 7 pages and 1 ps fig, few comments on others experiments are added, results are unchanged. To appear in Phys. Let.

    TeV physics and the Planck scale

    Get PDF
    Supersymmetry is one of the best motivated possibilities for new physics at the TeV scale. However, both concrete string constructions and phenomenological considerations suggest the possibility that the physics at the TeV scale could be more complicated than the Minimal Supersymmetric Standard Model (MSSM), e.g., due to extended gauge symmetries, new vector-like supermultiplets with non-standard SU(2)xU(1) assignments, and extended Higgs sectors. We briefly comment on some of these possibilities, and discuss in more detail the class of extensions of the MSSM involving an additional standard model singlet field. The latter provides a solution to the μ\mu problem, and allows significant modifications of the MSSM in the Higgs and neutralino sectors, with important consequences for collider physics, cold dark matter, and electroweak baryogenesis.Comment: 17 pages, 5 figures. To appear in New Journal of Physic

    CP Violation in Supersymmetric U(1)' Models

    Full text link
    The supersymmetric CP problem is studied within superstring-motivated extensions of the MSSM with an additional U(1)' gauge symmetry broken at the TeV scale. This class of models offers an attractive solution to the mu problem of the MSSM, in which U(1)' gauge invariance forbids the bare mu term, but an effective mu parameter is generated by the vacuum expectation value of a Standard Model singlet S which has superpotential coupling of the form SH_uH_d to the electroweak Higgs doublets. The effective mu parameter is thus dynamically determined as a function of the soft supersymmetry breaking parameters, and can be complex if the soft parameters have nontrivial CP-violating phases. We examine the phenomenological constraints on the reparameterization invariant phase combinations within this framework, and find that the supersymmetric CP problem can be greatly alleviated in models in which the phase of the SU(2) gaugino mass parameter is aligned with the soft trilinear scalar mass parameter associated with the SH_uH_d coupling. We also study how the phases filter into the Higgs sector, and find that while the Higgs sector conserves CP at the renormalizable level to all orders of perturbation theory, CP violation can enter at the nonrenormalizable level at one-loop order. In the majority of the parameter space, the lightest Higgs boson remains essentially CP even but the heavier Higgs bosons can exhibit large CP-violating mixings, similar to the CP-violating MSSM with large mu parameter.Comment: 29 pp, 3 figs, 2 table

    Modular Cosmology

    Get PDF
    An exploratory study of the cosmology of moduli in string theory. Moduli are argued to be natural inflaton fields and lead to a robust inflationary cosmology in which inflation takes place at the top of domain walls. The amplitude of microwave background fluctuations constrains the dynamics responsible for inflation to take place at a higher scale than supersymmetry breaking. Models explaining this difference in scales and also preventing the dilaton from running to infinity are proposed. The problem of dilaton domination of the energy density of the universe is not resolved.Comment: harvmac, 37 pages, 3 figures as a separate uuencoded tar fil

    Time Variation of the Fine Structure Constant Driven by Quintessence

    Full text link
    There are indications from the study of quasar absorption spectra that the fine structure constant α\alpha may have been measurably smaller for redshifts z>2.z>2. Analyses of other data (149^{149}Sm fission rate for the Oklo natural reactor, variation of 187^{187}Re β\beta-decay rate in meteorite studies, atomic clock measurements) which probe variations of α\alpha in the more recent past imply much smaller deviations from its present value. In this work we tie the variation of α\alpha to the evolution of the quintessence field proposed by Albrecht and Skordis, and show that agreement with all these data, as well as consistency with WMAP observations, can be achieved for a range of parameters. Some definite predictions follow for upcoming space missions searching for violations of the equivalence principle.Comment: Final version, to be published in Phys Rev
    corecore