15 research outputs found

    Bringing sensation to prosthetic hands—chronic assessment of implanted thin-film electrodes in humans

    Get PDF
    Direct stimulation of peripheral nerves with implantable electrodes successfully provided sensory feedback to amputees while using hand prostheses. Longevity of the electrodes is key to success, which we have improved for the polyimide-based transverse intrafascicular multichannel electrode (TIME). The TIMEs were implanted in the median and ulnar nerves of three trans-radial amputees for up to six months. We present a comprehensive assessment of the electrical properties of the thin-film metallization as well as material status post explantationem. The TIMEs stayed within the electrochemical safe limits while enabling consistent and precise amplitude modulation. This lead to a reliable performance in terms of eliciting sensation. No signs of corrosion or morphological change to the thin-film metallization of the probes was observed by means of electrochemical and optical analysis. The presented longevity demonstrates that thin-film electrodes are applicable in permanent implant systems

    Early carboniferous brachiopod faunas from the Baoshan block, west Yunnan, southwest China

    Full text link
    38 brachiopod species in 27 genera and subgenera are described from the Yudong Formation in the Shidian-Baoshan area, west Yunnan, southwest China. New taxa include two new subgenera: Unispirifer (Septimispirifer) and Brachythyrina (Longathyrina), and seven new species: Eomarginifera yunnanensis, Marginatia cylindrica, Unispirifer (Unispirifer) xiangshanensis, Unispirifer (Septimispirifer) wafangjieensis, Brachythyrina (Brachythyrina) transversa, Brachythyrina (Longathyrina) baoshanensis, and Girtyella wafangjieensis. Based on the described material and constraints from associated coral and conodont faunas, the age of the brachiopod fauna from the Yudon Formation is considered late Tournaisian (Early Carboniferous), with a possibility extending into earlyViseacutean.<br /

    Advanced 56 channels stimulation system to drive intrafascicular electrodes

    No full text
    International audienceA wearable, 56-channel stimulator was developed and successfully tested to drive multichannel intrafascicular electrodes. It is able to safely elicit sensory afferent signals through the activation of 4 Time-4H intrafascicular electrodes. The STIMEP embeds not only the pulse generator but also a software that ensures: i) real time control by a hand-prosthesis, ii) embedded procedures for sensation mapping interfaced with a PC software, iii) impedance follow-up, iv) real-time safety management

    Stability of flexible thin-film metallization stimulation electrodes: Analysis of explants after first-in-human study and improvement of in vivo performance

    No full text
    Objective. Micro-fabricated neural interfaces based on polyimide (PI) are achieving increasing importance in translational research. The ability to produce well-defined micro-structures with properties that include chemical inertness, mechanical flexibility and low water uptake are key advantages for these devices. Approach. This paper reports the development of the transverse intrafascicular multichannel electrode (TIME) used to deliver intraneural sensory feedback to an upper-limb amputee in combination with a sensorized hand prosthesis. A failure mode analysis on the explanted devices was performed after a first-in-human study limited to 30 d. Main results. About 90% of the stimulation contact sites of the TIMEs maintained electrical functionality and stability during the full implant period. However, optical analysis post-explantation revealed that 62.5% of the stimulation contacts showed signs of delamination at the metallization-PI interface. Such damage likely occurred due to handling during explantation and subsequent analysis, since a significant change in impedance was not observed in vivo. Nevertheless, whereas device integrity is mandatory for long-term functionality in chronic implantation, measures to increase the bonding strength of the metallization-PI interface deserve further investigation. We report here that silicon carbide (SiC) is an effective adhesion-promoting layer resisting heavy electrical stimulation conditions within a rodent animal trial. Optical analysis of the new electrodes revealed that the metallization remained unaltered after delivering over 14 million pulses in vivo without signs of delamination at the metallization-PI interface. Significance. Failure mode analysis guided implant stability optimization. Reliable adhesion of thin-film metallization to substrate has been proven using SiC, improving the potential transfer of micro-fabricated neural electrodes for chronic clinical applications. (Document number of Ethical Committee: P/905/CE/2012; Date of approval: 2012-10-04

    Biochemical responses of two Erythrinidae fish to environmental ammonia

    No full text
    The non-ionized form of ammonia is very toxic to many aquatic species. It is especially important in several aspects of fish biology. A large range of organismal strategies for coping with environmental stressors is usually observed in living organisms. Among those, the responses for managing chemical stressors are well studied. The present work compares biochemical responses of two evolutionarily close species, Hoplias malabaricus and Hoplerythrinus unitaeniatus, exposed to environmental ammonia. Adult fish were submitted to 1.0 mg/L of ammonium chloride for 24 hours, and plasma ammonia and urea levels were determined. The activities of OUC enzymes OCT and ARG, and the accessory enzyme GS, were quantified in liver extract and are expressed below in mumol/min/mg of wet tissue. Increases in OUC enzymes (GS from 1.14 to 2.43, OCT from 0.81 to 1.72, and ARG from 3.15 to 4.23), plasma ammonia (from 0.95 to 1.42 mmol/L), and plasma urea (from 0.82 to 1.53 mmol/L) were observed (p < 0.05) in H. malabaricus exposed to 1 mg/L of ammonia chloride. The GS in H. unitaeniatus increased from 1.43 to 1.84, however the OCT, ARG, and plasma urea from H. unitaeniatus did not change. These data indicate that each species responds differently to the same environmental stressor
    corecore