11 research outputs found

    Weak-field approximation of effective gravitational theory with local Galilean invariance

    Full text link
    We examine the weak-field approximation of locally Galilean invariant gravitational theories with general covariance in a (4+1)(4+1)-dimensional Galilean framework. The additional degrees of freedom allow us to obtain Poisson, diffusion, and Schr\"odinger equations for the fluctuation field. An advantage of this approach over the usual (3+1)(3+1)-dimensional General Relativity is that it allows us to choose an ansatz for the fluctuation field that can accommodate the field equations of the Lagrangian approach to MOdified Newtonian Dynamics (MOND) known as AQUAdratic Lagrangian (AQUAL). We investigate a wave solution for the Schr\"odinger equations.Comment: 15 page

    Gauge Formulation for Higher Order Gravity

    Get PDF
    This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained which includes derivatives of the curvature. We analyze the form of the second field strenght, G=F+fAFG=\partial F +fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of FF and quadratic contractions of GG are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his Generalized Electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behaviour at short distances as well as a meso-large distance modification.Comment: Published versio

    Second Order Gauge Theory

    Full text link
    A gauge theory of second order in the derivatives of the auxiliary field is constructed following Utiyama's program. A novel field strength G=F+fAFG=\partial F+fAF arises besides the one of the first order treatment, F=AA+fAAF=\partial A-\partial A+fAA. The associated conserved current is obtained. It has a new feature: topological terms are determined from local invariance requirements. Podolsky Generalized Eletrodynamics is derived as a particular case in which the Lagrangian of the gauge field is LPG2L_{P}\propto G^{2}. In this application the photon mass is estimated. The SU(N) infrared regime is analysed by means of Alekseev-Arbuzov-Baikov's Lagrangian.Comment: 27 pages. No figure. Final versio

    Cosmic acceleration from second order gauge gravity

    Full text link
    We construct a phenomenological theory of gravitation based on a second order gauge formulation for the Lorentz group. The model presents a long-range modification for the gravitational field leading to a cosmological model provided with an accelerated expansion at recent times. We estimate the model parameters using observational data and verify that our estimative for the age of the Universe is of the same magnitude than the one predicted by the standard model. The transition from the decelerated expansion regime to the accelerated one occurs recently (at 9.3  Gyr\sim9.3\;Gyr).Comment: RevTex4 15 pages, 1 figure. Accepted for publication in Astrophysics & Space Scienc

    Realistic Equations of State for the Primeval Universe

    Full text link
    Early universe equations of state including realistic interactions between constituents are built up. Under certain reasonable assumptions, these equations are able to generate an inflationary regime prior to the nucleosynthesis period. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of curvature parameter \kappa equal to 0 or +1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion.Comment: 32 pages, 5 figures. Citations added in this version. Accepted EPJ
    corecore