78 research outputs found

    Glucose Metabolism in the Progression of Prostate Cancer

    Get PDF
    Prostate cancer is one of the most common types of cancer in western country males but the mechanisms involved in the transformation processes have not been clearly elucidated. Alteration in cellular metabolism in cancer cells is recognized as a hallmark of malignant transformation, although it is becoming clear that the biological features of metabolic reprogramming not only differ in different cancers, but also among different cells in a type of cancer. Normal prostate epithelial cells have a peculiar and very inefficient energy metabolism as they use glucose to synthesize citrate that is secreted as part of the seminal liquid. During the transformation process, prostate cancer cells modify their energy metabolism from inefficient to highly efficient, often taking advantage of the interaction with other cell types in the tumor microenvironment that are corrupted to produce and secrete metabolic intermediates used by cancer cells in catabolic and anabolic processes. We recapitulate the metabolic transformations occurring in the prostate from the normal cell to the metastasis, highlighting the role of the microenvironment and summarizing what is known on the molecular mechanisms involved in the process

    Cytosolic serine hydroxymethyltransferase controls lung adenocarcinoma cells migratory ability by modulating AMP kinase activity

    Get PDF
    Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells. Inhibition of serine or glycine uptake from the extracellular milieu, as well as knockdown of the cytosolic one-carbon metabolism enzyme serine hydroxymethyltransferase (SHMT1), abolishes migration. Using rescue experiments with a brain extracellular extract, and direct measurements, we demonstrate that cytosolic serine starvation controls cell movement by increasing reactive oxygen species formation and decreasing ATP levels, thereby promoting activation of the AMP sensor kinase (AMPK) by phosphorylation. Activation of AMPK induces remodeling of the cytoskeleton and finally controls cell motility. These results highlight that cytosolic serine metabolism plays a key role in controlling motility, suggesting that cells are able to dynamically exploit the compartmentalization of this metabolism to adapt their metabolic needs to different cell functions (movement vs. proliferation). We propose a model to explain the relevance of serine/glycine metabolism in the preferential colonization of the brain by LUAD cells and suggest that the inhibition of serine/glycine uptake and/or cytosolic SHMT1 might represent a successful strategy to limit the formation of brain metastasis from primary tumors, a major cause of death in these patients

    Ancient hemes for ancient catalysts

    No full text
    Tetrapyrroles are essential molecules in living organisms and perform a multitude of functions in all kingdoms. Their synthesis is achieved in cells via a complex biosynthetic machinery which is unlikely to be maintained, if unnecessary. Here we propose that ancient hemes, such as the d1-heme of cd1 nitrite reductase or the siroheme of bacterial and plant nitrite and sulphite reductases, are molecular fossils which have survived the evolutionary pressure because their role is strategic for the organism where they are found today. The peculiar NO-releasing propensity of the d1-heme of P. aeruginosa NIR, recently shown by our group is, in our opinion, an example of this strategy. The hypothesis is that the d1-heme structure might be a pre-requisite for the fast rate of NO dissociation from the ferrous form, a property which is crucial to enzymatic activity and cannot be achieved with a more common b-type heme

    Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms

    No full text
    The nitrogen cycle pathways are responsible for the circulation of inorganic and organic N-containing molecules in nature. Among these pathways, those involving amino acids, N-oxides and in particular nitric oxide (NO) play strategic roles in the metabolism of microorganisms in natural environments and in host-pathogen interactions. Beyond their role in the N-cycle, amino acids and NO are also signalling molecules able to influence group behaviour in microorganisms and cell-cell communication in multicellular organisms, including humans.In this mini-review, we summarize the role of these compounds in the homeostasis of the bacterial communities called biofilms, commonly found in environmental, industrial and medical settings. Biofilms are difficult to eradicate since they are highly resistant to antimicrobials and to the host immune system. We highlight the effect of amino acids such as glutamate, glutamine and arginine and of NO on the signalling pathways involved in the metabolism of 3', 5'-cyclic diguanylic acid (c-di-GMP), a master regulator of motility, attachment and group behaviour in bacteria. The study of the metabolic routes involving these N-containing compounds represents an attractive topic to identify targets for biofilm control in both natural and medical settings
    • …
    corecore