791 research outputs found

    Protons and carbon ions acceleration in the target-normal-sheath-acceleration regime using low-contrast fs laser and metal-graphene targets

    Get PDF
    fs pulsed lasers at an intensity of the order of 1018 W/cm2, with a contrast of 10−5, were employed to irradiate thin foils to study the target-normal-sheath-acceleration (TNSA) regime. The forward ion acceleration was investigated using 1/11 µm thickness foils composed of a metallic sheet on which a thin reduced graphene oxide film with 10 nm thickness was deposited by single or both faces. The forward-accelerated ions were detected using SiC semiconductors connected in time-of-flight configuration. The use of intense and long pre-pulse generating the low contrast does not permit to accelerate protons above 1 MeV because it produces a pre-plasma destroying the foil, and the successive main laser pulse interacts with the expanding plasma and not with the overdense solid surface. Experimental results demonstrated that the maximum proton energies of about 700 keV and of 4.2 MeV carbon ions and higher were obtained under the condition of the optimal acceleration procedure. The measurements of ion energy and charge states confirm that the acceleration per charge state is measurable from the proton energy, confirming the Coulomb–Boltzmann-shifted theoretical model. However, heavy ions cannot be accelerated due to their mass and low velocity, which does not permit them to be subjected to the fast and high developed electric field driving the light-ion acceleration. The ion acceleration can be optimized based on the laser focal positioning and on the foil thickness, composition, and structure, as it will be presented and discussed

    Histochemical and morphological aspect of fresh frozen bone after maxillary graft: a preliminary study

    Get PDF
    Bone grafts are being made using materials extracted from autogenous bone because of its excellent biocompatibility. Bone grafts are widely used, in dentistry, for the reconstruction of severely atrophic jaws ,caused by trauma, oncologic diseases, oral infections or congenitally missing teeth. Although autografts remain the “gold standard”, however, the amount of bone, donor site morbility and unpredictable graft resorption are limitations of using this bone source. There is an increased use of fresh frozen bone allografts (FFBs) in orthopedics and in dentistry.(1) The FFB is aseptically harvested from different skeletal sites of live or cadaveric donors, immediately frozen and stored at −80 °c(2). The rigorous protocol for bone processing, which eliminates living cells and consequently the risk of transmission of diseases, and the reduced immunological reaction. The fresh frozen bone provided with osteoconduction and osteoinduction properties The aim of the present work was to study the morphological characteristics of fresh frozen after 6 month of bone graft to evaluate new bone formation. For the study, we selected 10 patients which were undergone to bone graft after bone atro- phy; the study was carried out by histology, immunofluorescence and scanning electron microscopy techniques. Results have shown, after 6 month of graft, the presence of cellular elements demonstrating new vital bone apposition and supporting that fresh frozen grafts present regenerative capacities. These morphological data support the results prevalently clinical demonstrated in Literature. These are preliminary results which need further measurements in follow-up periods, histologic and ultrasctructural features and also experimental protocol on animal models

    Resonance absorption enhancement in laser-generated plasma ablating Cu treated surfaces

    Get PDF
    AbstractResonant absorption effects for 1.064 µm infrared laser pulse radiations are investigated by using different techniques producing micrometric surface structures with dimensions comparable to the wavelength value. The laser absorption is controlled through measurement of the Cu ion acceleration using time-of-flight approach. Surface treatments include low energy laser etching in air, deposition of microspheres obtained ablating Cu targets in water, pulse laser deposition of microstructures precursor of thin homogeneous film, chemical etching with HNO3 acid, Ar+ ion sputtering and rolling burnishing surface of thin Cu foils. Results indicate that the best resonance effect is obtained with the rolling burnishing, ion sputtering and microsphere deposition processes which enhance the Cu ion energy and the yield emission

    Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Get PDF
    Deutered polyethylene (CD2)n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension), target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets) and used geometry (incidence angle, laser spot, secondary target positions).A number of D-D fusion events of the order of 106÷7 per laser shot has been measured

    Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Get PDF
    Deutered polyethylene (CD2)n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension), target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets) and used geometry (incidence angle, laser spot, secondary target positions).A number of D-D fusion events of the order of 106÷7 per laser shot has been measured

    POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION

    Get PDF
    Target Normal Sheath Acceleration method was employed at PALS to accelerate ions from laser-generated plasma at intensities above 1015 W/cm2. Laser parameters, irradiation conditions and target geometry and composition control the plasma properties and the electric field driving the ion acceleration. Cu nanoparticles deposited on the polymer promote resonant absorption effects increasing the plasma electron density and enhancing the proton acceleration. Protons can be accelerated in forward direction at kinetic energies up to about 3.5 MeV. The optimal target thickness, the maximum acceleration energy and the angular distribution of emitted particles have been measured using ion collectors, X-ray CCD streak camera, SiC detectors and Thomson Parabola Spectrometer

    POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION

    Get PDF
    Target Normal Sheath Acceleration method was employed at PALS to accelerate ions from laser-generated plasma at intensities above 1015 W/cm2. Laser parameters, irradiation conditions and target geometry and composition control the plasma properties and the electric field driving the ion acceleration. Cu nanoparticles deposited on the polymer promote resonant absorption effects increasing the plasma electron density and enhancing the proton acceleration. Protons can be accelerated in forward direction at kinetic energies up to about 3.5 MeV. The optimal target thickness, the maximum acceleration energy and the angular distribution of emitted particles have been measured using ion collectors, X-ray CCD streak camera, SiC detectors and Thomson Parabola Spectrometer

    Laser ablation coupled to mass quadrupole spectrometry for analysis in the cultural heritage

    Get PDF
    A Nd:YAg laser operating at 1064 nm, 150 mJ, 3 ns pulse duration, 1-10 Hz repetition rate and 109 W/cm2 intensity is employed to irradiate ancient metallic and ceramic samples in high vacuum. A mass quadrupole spectrometer (MQS), operating between 1-300 amu with sensitivity better than 0.1 ppm, analyzes elements and compounds. Repetitive laser ablation removes in controlled manner the first surface layers of the irradiated samples so that the irradiation time can be correlated to the layer depth. MQS can be fixed to peculiar masses so that during the laser irradiation the mass yields can be plotted as a function of the sample depth. The technique permits to give the depth profiles of elements, chemical compounds and isotopes characterizing the composition of the analyzed samples. The analysis of ancient coins based on bronze and silver alloys and of old vitrified colored ceramics has been investigated to identify peculiar elements of the colored layers. Particularly, the lead isotopic ratios 208Pb/207Pb and 206Pb/207Pb were measured in bronze coins. Measurements were compared with the database of lead isotopic ratios in lead minerals extracted from old mines in the Mediterranean basin. In some cases, of special interest for Archeologists, the comparison has indicated that the lead employed for the coin production could have been extracted from mines of particular geographic sites. © Published under licence by IOP Publishing Ltd
    corecore