4,346 research outputs found
The information content of gravitational wave harmonics in compact binary inspiral
The nonlinear aspect of gravitational wave generation that produces power at
harmonics of the orbital frequency, above the fundamental quadrupole frequency,
is examined to see what information about the source is contained in these
higher harmonics. We use an order (4/2) post-Newtonian expansion of the
gravitational wave waveform of a binary system to model the signal seen in a
spaceborne gravitational wave detector such as the proposed LISA detector.
Covariance studies are then performed to determine the ultimate accuracy to be
expected when the parameters of the source are fit to the received signal. We
find three areas where the higher harmonics contribute crucial information that
breaks degeneracies in the model and allows otherwise badly-correlated
parameters to be separated and determined. First, we find that the position of
a coalescing massive black hole binary in an ecliptic plane detector, such as
OMEGA, is well-determined with the help of these harmonics. Second, we find
that the individual masses of the stars in a chirping neutron star binary can
be separated because of the mass dependence of the harmonic contributions to
the wave. Finally, we note that supermassive black hole binaries, whose
frequencies are too low to be seen in the detector sensitivity window for long,
may still have their masses, distances, and positions determined since the
information content of the higher harmonics compensates for the information
lost when the orbit-induced modulation of the signal does not last long enough
to be apparent in the data.Comment: 13 pages, 5 figure
LISA data analysis: The monochromatic binary detection and initial guess problems
We consider the detection and initial guess problems for the LISA
gravitational wave detector. The detection problem is the problem of how to
determine if there is a signal present in instrumental data and how to identify
it. Because of the Doppler and plane-precession spreading of the spectral power
of the LISA signal, the usual power spectrum approach to detection will have
difficulty identifying sources. A better method must be found. The initial
guess problem involves how to generate {\it a priori} values for the parameters
of a parameter-estimation problem that are close enough to the final values for
a linear least-squares estimator to converge to the correct result. A useful
approach to simultaneously solving the detection and initial guess problems for
LISA is to divide the sky into many pixels and to demodulate the Doppler
spreading for each set of pixel coordinates. The demodulated power spectra may
then be searched for spectral features. We demonstrate that the procedure works
well as a first step in the search for gravitational waves from monochromatic
binaries.Comment: 8 pages, 8 figure
Long-term results in pancreatic transplantation with special emphasis on the use of prolamine
Our pancreatic transplantation programme was initiated in 1979. Since then a total of 102 pancreas transplantations have been performed, blocking exocrine secretion using the duct occlusion technique with prolamine. Early non-immunological complications are frequent. The long-term results (9 years) in combined pancreas and kidney transplanted patients are satisfying: the survival rate for pancreas is 38% and 54% for kidney. Patient survival rate in this period is 85%. Beyond the first year post-transplant the exocrine activity disappears whereas the endocrine function remains well preserved
LISA data analysis I: Doppler demodulation
The orbital motion of the Laser Interferometer Space Antenna (LISA) produces
amplitude, phase and frequency modulation of a gravitational wave signal. The
modulations have the effect of spreading a monochromatic gravitational wave
signal across a range of frequencies. The modulations encode useful information
about the source location and orientation, but they also have the deleterious
affect of spreading a signal across a wide bandwidth, thereby reducing the
strength of the signal relative to the instrument noise. We describe a simple
method for removing the dominant, Doppler, component of the signal modulation.
The demodulation reassembles the power from a monochromatic source into a
narrow spike, and provides a quick way to determine the sky locations and
frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde
CARS Temperature Measurements in a Hypersonic Propulsion Test Facility
Nonintrusive diagnostic measurements were performed in the supersonic reacting flow of the Hypersonic Propulsion Test Cell 2 at NASA-Langley. A Coherent Anti-stokes Raman Spectroscopy (CARS) system was assembled specifically for the test cell environment. System design considerations were: (1) test cell noise and vibration; (2) contamination from flow field or atmospheric borne dust; (3) unwanted laser or electrically induced combustion (inside or outside the duct); (4) efficient signal collection; (5) signal splitting to span the wide dynamic range present throughout the flow field; (6) movement of the sampling volume in the flow; and (7) modification of the scramjet model duct to permit optical access to the reacting flow with the CARS system. The flow in the duct was a nominal Mach 2 flow with static pressure near one atmosphere. A single perpendicular injector introduced hydrogen into the flow behind a rearward facing step. CARS data was obtained in three planes downstream of the injection region. At least 20 CARS data points were collected at each of the regularly spaced sampling locations in each data plane. Contour plots of scramjet combustor static temperature in a reacting flow region are presented
Recovering the stationary phase condition for accurately obtaining scattering and tunneling times
The stationary phase method is often employed for computing tunneling {\em
phase} times of analytically-continuous {\em gaussian} or infinite-bandwidth
step pulses which collide with a potential barrier. The indiscriminate
utilization of this method without considering the barrier boundary effects
leads to some misconceptions in the interpretation of the phase times. After
reexamining the above barrier diffusion problem where we notice the wave packet
collision necessarily leads to the possibility of multiple reflected and
transmitted wave packets, we study the phase times for tunneling/reflecting
particles in a framework where an idea of multiple wave packet decomposition is
recovered. To partially overcome the analytical incongruities which rise up
when tunneling phase time expressions are obtained, we present a theoretical
exercise involving a symmetrical collision between two identical wave packets
and a one dimensional squared potential barrier where the scattered wave
packets can be recomposed by summing the amplitudes of simultaneously reflected
and transmitted waves.Comment: 32 pages, 5 figures, 1 tabl
A Bayesian approach to the follow-up of candidate gravitational wave signals
Ground-based gravitational wave laser interferometers (LIGO, GEO-600, Virgo
and Tama-300) have now reached high sensitivity and duty cycle. We present a
Bayesian evidence-based approach to the search for gravitational waves, in
particular aimed at the followup of candidate events generated by the analysis
pipeline. We introduce and demonstrate an efficient method to compute the
evidence and odds ratio between different models, and illustrate this approach
using the specific case of the gravitational wave signal generated during the
inspiral phase of binary systems, modelled at the leading quadrupole Newtonian
order, in synthetic noise. We show that the method is effective in detecting
signals at the detection threshold and it is robust against (some types of)
instrumental artefacts. The computational efficiency of this method makes it
scalable to the analysis of all the triggers generated by the analysis
pipelines to search for coalescing binaries in surveys with ground-based
interferometers, and to a whole variety of signal waveforms, characterised by a
larger number of parameters.Comment: 9 page
Large-Scale Multidisciplinary Optimization of a Small Satellite’s Design and Operation
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140669/1/1.a32751.pd
- …