5,731 research outputs found
The Angular Resolution of Space-Based Gravitational Wave Detectors
Proposed space-based gravitational wave antennas involve satellites arrayed
either in an equilateral triangle around the earth in the ecliptic plane (the
ecliptic-plane option) or in an equilateral triangle orbiting the sun in such a
way that the plane of the triangle is tilted at 60 degrees relative to the
ecliptic (the precessing-plane option). In this paper, we explore the angular
resolution of these two classes of detectors for two kinds of sources
(essentially monochromatic compact binaries and coalescing massive-black-hole
binaries) using time-domain expressions for the gravitational waveform that are
accurate to 4/2 PN order. Our results display an interesting effect not
previously reported in the literature, and underline the importance of
including the higher-order PN terms in the waveform when predicting the angular
resolution of ecliptic-plane detector arrays.Comment: 13 pages, 6 figures, submitted to Phys Rev D. The current version
corrects an error in our original paper and adds some clarifying language.
The error also required correction of the graphs now shown in Figures 3
through
A trapped mercury 199 ion frequency standard
Mercury 199 ions confined in an RF quadrupole trap and optically pumped by mercury 202 ion resonance light are investigated as the basis for a high performance frequency standard with commercial possibilities. Results achieved and estimates of the potential performance of such a standard are given
LISA detections of massive black hole inspirals: parameter extraction errors due to inaccurate template waveforms
The planned Laser Interferometer Space Antenna (LISA) is expected to detect
the inspiral and merger of massive black hole binaries (MBHBs) at z <~ 5 with
signal-to-noise ratios (SNRs) of hundreds to thousands. Because of these high
SNRs, and because these SNRs accrete over periods of weeks to months, it should
be possible to extract the physical parameters of these systems with high
accuracy; for instance, for a ~ 10^6 Msun MBHBs at z = 1 it should be possible
to determine the two masses to ~ 0.1% and the sky location to ~ 1 degree.
However, those are just the errors due to noise: there will be additional
"theoretical" errors due to inaccuracies in our best model waveforms, which are
still only approximate. The goal of this paper is to estimate the typical
magnitude of these theoretical errors. We develop mathematical tools for this
purpose, and apply them to a somewhat simplified version of the MBHB problem,
in which we consider just the inspiral part of the waveform and neglect
spin-induced precession, eccentricity, and PN amplitude corrections. For this
simplified version, we estimate that theoretical uncertainties in sky position
will typically be ~ 1 degree, i.e., comparable to the statistical uncertainty.
For the mass and spin parameters, our results suggest that while theoretical
errors will be rather small absolutely, they could still dominate over
statistical errors (by roughly an order of magnitude) for the strongest
sources. The tools developed here should be useful for estimating the magnitude
of theoretical errors in many other problems in gravitational-wave astronomy.Comment: RevTeX4, 16 pages, 2 EPS figures. Corrected typos, clarified
statement
The Effect of the LISA Response Function on Observations of Monochromatic Sources
The Laser Interferometer Space Antenna (LISA) is expected to provide the
largest observational sample of binary systems of faint sub-solar mass compact
objects, in particular white-dwarfs, whose radiation is monochromatic over most
of the LISA observational window. Current astrophysical estimates suggest that
the instrument will be able to resolve about 10000 such systems, with a large
fraction of them at frequencies above 3 mHz, where the wavelength of
gravitational waves becomes comparable to or shorter than the LISA arm-length.
This affects the structure of the so-called LISA transfer function which cannot
be treated as constant in this frequency range: it introduces characteristic
phase and amplitude modulations that depend on the source location in the sky
and the emission frequency. Here we investigate the effect of the LISA transfer
function on detection and parameter estimation for monochromatic sources. For
signal detection we show that filters constructed by approximating the transfer
function as a constant (long wavelength approximation) introduce a negligible
loss of signal-to-noise ratio -- the fitting factor always exceeds 0.97 -- for
f below 10mHz, therefore in a frequency range where one would actually expect
the approximation to fail. For parameter estimation, we conclude that in the
range 3mHz to 30mHz the errors associated with parameter measurements differ
from about 5% up to a factor of 10 (depending on the actual source parameters
and emission frequency) with respect to those computed using the long
wavelength approximation.Comment: replacement version with typos correcte
Design and implementation of a compliant robot with force feedback and strategy planning software
Force-feedback robotics techniques are being developed for automated precision assembly and servicing of NASA space flight equipment. Design and implementation of a prototype robot which provides compliance and monitors forces is in progress. Computer software to specify assembly steps and makes force feedback adjustments during assembly are coded and tested for three generically different precision mating problems. A model program demonstrates that a suitably autonomous robot can plan its own strategy
Testing Alternative Theories of Gravity using LISA
We investigate the possible bounds which could be placed on alternative
theories of gravity using gravitational wave detection from inspiralling
compact binaries with the proposed LISA space interferometer. Specifically, we
estimate lower bounds on the coupling parameter \omega of scalar-tensor
theories of the Brans-Dicke type and on the Compton wavelength of the graviton
\lambda_g in hypothetical massive graviton theories. In these theories,
modifications of the gravitational radiation damping formulae or of the
propagation of the waves translate into a change in the phase evolution of the
observed gravitational waveform. We obtain the bounds through the technique of
matched filtering, employing the LISA Sensitivity Curve Generator (SCG),
available online. For a neutron star inspiralling into a 10^3 M_sun black hole
in the Virgo Cluster, in a two-year integration, we find a lower bound \omega >
3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6.
The bound is independent of LISA arm length, but is inversely proportional to
the LISA position noise error. Lower bounds on the graviton Compton wavelength
ranging from 10^15 km to 5 * 10^16 km can be obtained from one-year
observations of massive binary black hole inspirals at cosmological distances
(3 Gpc), for masses ranging from 10^4 to 10^7 M_sun. For the highest-mass
systems (10^7 M_sun), the bound is proportional to (LISA arm length)^{1/2} and
to (LISA acceleration noise)^{-1/2}. For the others, the bound is independent
of these parameters because of the dominance of white-dwarf confusion noise in
the relevant part of the frequency spectrum. These bounds improve and extend
earlier work which used analytic formulae for the noise curves.Comment: 16 pages, 9 figures, submitted to Classical & Quantum Gravit
Orbital evolution of a test particle around a black hole: higher-order corrections
We study the orbital evolution of a radiation-damped binary in the extreme
mass ratio limit, and the resulting waveforms, to one order beyond what can be
obtained using the conservation laws approach. The equations of motion are
solved perturbatively in the mass ratio (or the corresponding parameter in the
scalar field toy model), using the self force, for quasi-circular orbits around
a Schwarzschild black hole. This approach is applied for the scalar model.
Higher-order corrections yield a phase shift which, if included, may make
gravitational-wave astronomy potentially highly accurate.Comment: 4 pages, 3 Encapsulated PostScript figure
Prospects for gravitational-wave observations of neutron-star tidal disruption in neutron-star/black-hole binaries
For an inspiraling neutron-star/black-hole binary (NS/BH), we estimate the
gravity-wave frequency f_td at the onset of NS tidal disruption. We model the
NS as a tidally distorted, homogeneous, Newtonian ellipsoid on a circular,
equatorial geodesic around a Kerr BH. We find that f_td depends strongly on the
NS radius R, and estimate that LIGO-II (ca. 2006-2008) might measure R to 15%
precision at 140 Mpc (about 1 event/yr under current estimates). This suggests
that LIGO-II might extract valuable information about the NS equation of state
from tidal-disruption waves.Comment: RevTeX, 4 pages, 2 EPS figures. Revised slightly, corrected typo
Gravitational Waves from coalescing binaries: Estimation of parameters
The paper presents a statistical model which reproduces the results of Monte
Carlo simulations to estimate the parameters of the gravitational wave signal
from a coalesing binary system. The model however is quite general and would be
useful in other parameter estimation problems.Comment: LaTeX with RevTeX macros, 4 figure
The Cosmological Constant and Advanced Gravitational Wave Detectors
Interferometric gravitational wave detectors could measure the frequency
sweep of a binary inspiral [characterized by its chirp mass] to high accuracy.
The observed chirp mass is the intrinsic chirp mass of the binary source
multiplied by , where is the redshift of the source. Assuming a
non-zero cosmological constant, we compute the expected redshift distribution
of observed events for an advanced LIGO detector. We find that the redshift
distribution has a robust and sizable dependence on the cosmological constant;
the data from advanced LIGO detectors could provide an independent measurement
of the cosmological constant.Comment: 13 pages plus 5 figure, LaTeX. Revised and final version, to appear
in Phys. Rev.
- …