4 research outputs found

    Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation

    No full text
    Structure-based calculations are combined with quantitative modeling of spectra and energy transfer dynamics to detemine the energy transfer scheme of the PE545 principal light-harvesting antenna of the cryptomonad Rhodomonas CS24. We use a recently developed quantum-mechanics/molecular mechanics (QM/MM) method that allows us to account for pigment-protein interactions at atomic detail in site energies, transition dipole moments, and electronic couplings. In addition, conformational flexibility of the pigment-protein complex is accounted for through molecular dynamics (MD) simulations. We find that conformational disorder largely smoothes the large energetic differences predicted from the crystal structure between the pseudosymmetric pairs PE

    Mechanistic principles and applications of resonance energy transfer

    Get PDF
    Resonance energy transfer is the primary mechanism for the migration of electronic excitation in the condensed phase. Well-known in the particular context of molecular photochemistry, it is a phenomenon whose much wider prevalence in both natural and synthetic materials has only slowly been appreciated, and for which the fundamental theory and understanding have witnessed major advances in recent years. With the growing to maturity of a robust theoretical foundation, the latest developments have led to a more complete and thorough identification of key principles. The present review first describes the context and general features of energy transfer, then focusing on its electrodynamic, optical, and photophysical characteristics. The particular role the mechanism plays in photosynthetic materials and synthetic analogue polymers is then discussed, followed by a summary of its primarily biological structure determination applications. Lastly, several possible methods are described, by the means of which all-optical switching might be effected through the control and application of resonance energy transfer in suitably fabricated nanostructures.Key words: FRET, Förster energy transfer, photophysics, fluorescence, laser

    Protein Folding and Binding: Effective Potentials, Replica Exchange Simulations, and Network Models

    No full text
    corecore