2,140 research outputs found

    Evaluation of active ingredients and nematodes against slugs and snails on organic lettuce

    Get PDF
    Three years trials were carried out to evaluate the efficacy of some molluscicides for the control of slugs (Arion sp.) and snails (Cepaea nemoralis and Helix aspersa) on organic lettuce in Emilia-Romagna (Italy). Iron phosphate has proven to be as effective as those based on metaldehyde. The nematodes Phasmarabditis hermaphrodita did not work against individuals as big as those employed in the trials

    Deep VLT infrared observations of X-ray Dim Isolated Neutron Stars

    Full text link
    X-ray observations have unveiled the existence of a family of radio-quiet Isolated Neutron Stars whose X-ray emission is purely thermal, hence dubbed X-ray Dim Isolated Neutron Stars (XDINSs). While optical observations have allowed to relate the thermal emission to the neutron star cooling and to build the neutron star surface thermal map, IR observations are critical to pinpoint a spectral turnover produced by a so far unseen magnetospheric component, or by the presence of a fallback disk. The detection of such a turnover can provide further evidence of a link between this class of isolated neutron stars and the magnetars, which show a distinctive spectral flattening in the IR. Here we present the deepest IR observations ever of five XDINSs, which we use to constrain a spectral turnover in the IR and the presence of a fallback disk. The data are obtained using the ISAAC instrument at the VLT. For none of our targets it was possible to identify the IR counterpart down to limiting magnitudes H = 21.5 - 22.9. Although these limits are the deepest ever obtained for neutron stars of this class, they are not deep enough to rule out the existence and the nature of a possible spectral flattening in the IR. We also derive, by using disk models, the upper limits on the mass inflow rate in a fallback disk. We find the existence of a putative fallback disk consistent (although not confirmed) with our observations.Comment: 6 pages, 2 figures, accepted by A&A on 26-06-200

    Effectiveness of entomopathogenic nematodes in the control of Cydia pomonella larvae in Northern Italy

    Get PDF
    Since 2006, a large scale research on the effectiveness of entomopathogenic nematodes (EPN) in the control of codling moth (CM), Cydia pomonella, overwintering larvae has been performed on about 35 ha of pear orchards per year in Emilia-Romagna, Northern Italy. Steinernema carpocapsae and Steinernema feltiae activity was checked after spray applications of EPNs to the trunk and branches. In 2006, the treatment was applied either in spring or in autumn at different doses, before CM pupation; in 2007 the EPN treatment was applied only in autumn at 1.5 x 109 I.J. ha –1. Every year it was distributed by means of a conventional mist blower. The larval mortality was assessed directly on sentinel larvae in card boards on the trunks and indirectly on the eggs laid by the females of the first CM generation in spring. Moreover, each year, a trial was performed applying only S. carpocapsae on sentinel larvae with the aim of testing this nematode at suitable temperatures but at different water volumes. The CM sentinel larvae were effectively parasitized after autumnal EPN application. Moreover, the egg assessment demonstrated a good decrease in CM population in spring 2007, when EPNs had been applied at the best weather conditions (t° 12-14 °C and rain) in the previous autumn

    Optical emission near a high-impedance mirror

    Get PDF
    Solid state light emitters rely on metallic contacts with high sheet-conductivity for effective charge injection. Unfortunately, such contacts also support surface plasmon polariton (SPP) excitations that dissipate optical energy into the metal and limit the external quantum efficiency. Here, inspired by the concept of radio-frequency (RF) high-impedance surfaces and their use in conformal antennas we illustrate how electrodes can be nanopatterned to simultaneously provide a high DC electrical conductivity and high-impedance at optical frequencies. Such electrodes do not support SPPs across the visible spectrum and greatly suppress dissipative losses while facilitating a desirable Lambertian emission profile. We verify this concept by studying the emission enhancement and photoluminescence lifetime for a dye emitter layer deposited on the electrodes

    Hyperplane Neural Codes and the Polar Complex

    Full text link
    Hyperplane codes are a class of convex codes that arise as the output of a one layer feed-forward neural network. Here we establish several natural properties of stable hyperplane codes in terms of the {\it polar complex} of the code, a simplicial complex associated to any combinatorial code. We prove that the polar complex of a stable hyperplane code is shellable and show that most currently known properties of the hyperplane codes follow from the shellability of the appropriate polar complex.Comment: 23 pages, 5 figures. To appear in Proceedings of the Abel Symposiu

    Isotope Spectroscopy

    Get PDF
    The measurement of isotopic ratios provides a privileged insight both into nucleosynthesis and into the mechanisms operating in stellar envelopes, such as gravitational settling. In this article, we give a few examples of how isotopic ratios can be determined from high-resolution, high-quality stellar spectra. We consider examples of the lightest elements, H and He, for which the isotopic shifts are very large and easily measurable, and examples of heavier elements for which the determination of isotopic ratios is more difficult. The presence of 6Li in the stellar atmospheres causes a subtle extra depression in the red wing of the 7Li 670.7 nm doublet which can only be detected in spectra of the highest quality. But even with the best spectra, the derived 6^6Li abundance can only be as good as the synthetic spectra used for their interpretation. It is now known that 3D non-LTE modelling of the lithium spectral line profiles is necessary to account properly for the intrinsic line asymmetry, which is produced by convective flows in the atmospheres of cool stars, and can mimic the presence of 6Li. We also discuss briefly the case of the carbon isotopic ratio in metal-poor stars, and provide a new determination of the nickel isotopic ratios in the solar atmosphere.Comment: AIP Thinkshop 10 "High resolution optical spectroscopy", invited talk, AN in pres

    Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    Get PDF
    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\n20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes
    • …
    corecore