59 research outputs found

    High resolution infrared datasets useful for validating stratospheric models

    Get PDF
    An important objective of the High Speed Research Program (HSRP) is to support research in the atmospheric sciences that will improve the basic understanding of the circulation and chemistry of the stratosphere and lead to an interim assessment of the impact of a projected fleet of High Speed Civil Transports (HSCT's) on the stratosphere. As part of this work, critical comparisons between models and existing high quality measurements are planned. These comparisons will be used to test the reliability of current atmospheric chemistry models. Two suitable sets of high resolution infrared measurements are discussed

    Stratospheric measurements of continuous absorption near 2400 cm^-1

    Get PDF
    Solar occultation spectra obtained with a balloon-borne interferometer have been used to study continuous absorption by N2 and CO2 near 2400 cm^-1 in the lower stratosphere. Synthetic continuum transmittances, calculated from published coefficients for far-wing absorption by CO2 lines and for pressure-induced absorption by the fundamental band of N2, are in fair agreement with the observed stratospheric values. The continuum close to the ν3 R-branch band head of CO2 is sensitive to the CO2 far-wing line shape. Therefore, given highly accurate knowledge of the N2 continuum from laboratory data, high-resolution stratospheric spectra provide a sensitive means for in situ testing of various air-broadened CO2 line shapes at low temperatures

    Analysis of atmospheric spectra for trace gases

    Get PDF
    The objective is the comprehensive analysis of high resolution atmospheric spectra recorded in the middle-infrared region to obtain simultaneous measurements of coupled parameters (gas concentrations of key trace constituents, total column amounts, pressure, and temperature) in the stratosphere and upper troposphere. Solar absorption spectra recorded at 0.002 and 0.02 cm exp -1 resolutions with the University of Denver group's balloon-borne, aircraft borne, and ground-based interferometers and 0.005 to 0.01 cm exp -1 resolution solar spectra from Kitt Peak are used in the analyses

    Seasonal cycle in atmospheric HCl at 45 deg S

    Get PDF
    High resolution Fourier transform infrared interferometric atmospheric solar absorption measurements have been performed at the National Institute for Water and Atmospheric Research Laboratory at Lauder, New Zealand on a routine basis since October 1989. This laboratory has been selected as the Mid-latitude Charter Site of the Network for the Detection of Stratospheric Change and is at a latitude of 45 deg S. Particular attention has been paid to the absorption by atmospheric hydrogen chloride at 2925.9 cm(exp -1) and in this paper the results of the seasonal cycle in CHl above Lauder will be presented. Because of the very clean troposphere at this site, the CHl column measured from the ground is essentially a stratospheric column measurement

    Temperature-Dependence of Air-Broadened Line Widths and Shifts in the nu3 Band of Ozone

    Get PDF
    The 9.6-micron bands of O3 are used by many remote-sensing experiments for retrievals of terrestrial atmospheric ozone concentration profiles. Line parameter errors can contribute significantly to the total errors in these retrievals, particularly for nadir-viewing. The McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak was used to record numerous high-resolution infrared absorption spectra of O3 broadened by various gases at temperatures between 160 and 300 K. Over 30 spectra were analyzed simultaneously using a multispectrum nonlinear least squares fitting technique to determine Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for selected transitions in the 3 fundamental band of (16)O3. We compare the present results with other measurements reported in the literature and with the ozone parameters on the 2000 and 2004 editions of the HITRAN database

    Spectroscopic Detection of COClF in the Tropical and Mid-Latitude Lower Stratosphere

    Get PDF
    We report retrievals of COClF (carbonyl chlorofluoride) based on atmospheric chemistry experiment (ACE) solar occultation spectra recorded at tropical and mid-latitudes during 2004-2005. The COClF molecule is a temporary reservoir of both chlorine and fluorine and has not been measured previously by remote sensing. A maximum COClF mixing ratio of 99.7+/-48.0 pptv (10(exp -12) per unit volume, 1 sigma) is measured at 28km for tropical and subtropical occultations (latitudes below 20deg in both hemispheres) with lower mixing ratios at both higher and lower altitudes. Northern hemisphere mid-latitude mixing ratios (30-50degN) resulted in an average profile with a peak mixing ratio of 51.7+/-32.1 pptv, 1 sigma, at 27 km, also decreasing above and below that altitude. We compare the measured average profiles with the one reported set of in situ lower stratospheric mid-latitude measurements from 1986 and 1987, a previous two-dimensional (2-D) model calculation for 1987 and 1993, and a 2-D-model prediction for 2004. The measured average tropical profile is in close agreement with the model prediction; the northern mid-latitude profile is also consistent, although the peak in the measured profile occurs at a higher altitude (2.5-4.5km offset) than in the model prediction. Seasonal average 2-D-model predictions of the COClF stratospheric distribution for 2004 are also reported
    • …
    corecore