6,586 research outputs found
Examining Mental Health and Well-being Provision in Schools in Europe: Methodological Approach
Schools are considered an ideal setting for community-based mental health and well-being interventions for young people. However, in spite of extensive literature examining the effectiveness of such interventions, very few studies have investigated existing mental health and well-being provision in schools. The current study aims to extend such previous research by surveying primary and secondary schools to investigate the nature of available provision in nine European countries (Germany, Ireland, the Netherlands, Poland, Serbia, Spain, Sweden, the UK and Ukraine). Furthermore, the study aims to investigate potential barriers to mental health and well-being provision and compare provision within and between countries
Weighted-density approximation for general nonuniform fluid mixtures
In order to construct a general density-functional theory for nonuniform
fluid mixtures, we propose an extension to multicomponent systems of the
weighted-density approximation (WDA) of Curtin and Ashcroft [Phys. Rev. A 32,
2909 (1985)]. This extension corrects a deficiency in a similar extension
proposed earlier by Denton and Ashcroft [Phys. Rev. A 42, 7312 (1990)], in that
that functional cannot be applied to the multi-component nonuniform fluid
systems with spatially varying composition, such as solid-fluid interfaces. As
a test of the accuracy of our new functional, we apply it to the calculation of
the freezing phase diagram of a binary hard-sphere fluid, and compare the
results to simulation and the Denton-Ashcroft extension.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E as Brief Repor
Acute alcohol administration dampens central extended amygdala reactivity.
Alcohol use is common, imposes a staggering burden on public health, and often resists treatment. The central extended amygdala (EAc)-including the bed nucleus of the stria terminalis (BST) and the central nucleus of the amygdala (Ce)-plays a key role in prominent neuroscientific models of alcohol drinking, but the relevance of these regions to acute alcohol consumption in humans remains poorly understood. Using a single-blind, randomized-groups design, multiband fMRI data were acquired from 49 social drinkers while they performed a well-established emotional faces paradigm after consuming either alcohol or placebo. Relative to placebo, alcohol significantly dampened reactivity to emotional faces in the BST. To rigorously assess potential regional differences in activation, data were extracted from unbiased, anatomically predefined regions of interest. Analyses revealed similar levels of dampening in the BST and Ce. In short, alcohol transiently reduces reactivity to emotional faces and it does so similarly across the two major divisions of the human EAc. These observations reinforce the translational relevance of addiction models derived from preclinical work in rodents and provide new insights into the neural systems most relevant to the consumption of alcohol and to the initial development of alcohol abuse in humans
Supersymmetry Breaking Triggered by Monopoles
We investigate N = 1 supersymmetric gauge theories where monopole
condensation triggers supersymmetry breaking in a metastable vacuum. The
low-energy effective theory is an O'Raifeartaigh-like model of the kind
investigated recently by Shih where the R-symmetry can be spontaneously broken.
We examine several implementations with varying degrees of phenomenological
interest.Comment: 20 pages, 4 figures (v2: minor clarifications and typos fixed
Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder
The failure probabilities or the strength distributions of heterogeneous 1D
systems with continuous local strength distribution and local load sharing have
been studied using a simple, exact, recursive method. The fracture behavior
depends on the local bond-strength distribution, the system size, and the
applied stress, and crossovers occur as system size or stress changes. In the
brittle region, systems with continuous disorders have a failure probability of
the modified-Gumbel form, similar to that for systems with percolation
disorder. The modified-Gumbel form is of special significance in weak-stress
situations. This new recursive method has also been generalized to calculate
exactly the failure probabilities under various boundary conditions, thereby
illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure
Lattice density-functional theory of surface melting: the effect of a square-gradient correction
I use the method of classical density-functional theory in the
weighted-density approximation of Tarazona to investigate the phase diagram and
the interface structure of a two-dimensional lattice-gas model with three
phases -- vapour, liquid, and triangular solid. While a straightforward
mean-field treatment of the interparticle attraction is unable to give a stable
liquid phase, the correct phase diagram is obtained when including a suitably
chosen square-gradient term in the system grand potential. Taken this theory
for granted, I further examine the structure of the solid-vapour interface as
the triple point is approached from low temperature. Surprisingly, a novel
phase (rather than the liquid) is found to grow at the interface, exhibiting an
unusually long modulation along the interface normal. The conventional
surface-melting behaviour is recovered only by artificially restricting the
symmetries being available to the density field.Comment: 16 pages, 6 figure
Bursts in a fiber bundle model with continuous damage
We study the constitutive behaviour, the damage process, and the properties
of bursts in the continuous damage fiber bundle model introduced recently.
Depending on its two parameters, the model provides various types of
constitutive behaviours including also macroscopic plasticity. Analytic results
are obtained to characterize the damage process along the plastic plateau under
strain controlled loading, furthermore, for stress controlled experiments we
develop a simulation technique and explore numerically the distribution of
bursts of fiber breaks assuming infinite range of interaction. Simulations
revealed that under certain conditions power law distribution of bursts arises
with an exponent significantly different from the mean field exponent 5/2. A
phase diagram of the model characterizing the possible burst distributions is
constructed.Comment: 9 pages, 11 figures, APS style, submitted for publicatio
Modelling Heat Transfer of Carbon Nanotubes
Modelling heat transfer of carbon nanotubes is important for the thermal
management of nanotube-based composites and nanoelectronic device. By using a
finite element method for three-dimensional anisotropic heat transfer, we have
simulated the heat conduction and temperature variations of a single nanotube,
a nanotube array and a part of nanotube-based composite surface with heat
generation. The thermal conductivity used is obtained from the upscaled value
from the molecular simulations or experiments. Simulations show that nanotube
arrays have unique cooling characteristics due to its anisotropic thermal
conductivity.Comment: 10 pages, 4 figure
- …
