3 research outputs found

    Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription

    No full text
    The transcription factor Max is a basic-helix-loop-helix leucine zipper (bHLHLZ) protein that forms homodimers or interacts with other bHLHLZ proteins, including Myc and Mxd proteins. Among this dynamic network of interactions, the Myc/Max heterodimer has crucial roles in regulating normal cellular processes, but its transcriptional activity is deregulated in a majority of human cancers. Despite this significance, the arsenal of high-quality chemical probes to interrogate these proteins remains limited. We used small molecule microarrays to identify compounds that bind Max in a mechanistically unbiased manner. We discovered the asymmetric polycyclic lactam, KI-MS2-008, which stabilizes the Max homodimer while reducing Myc protein and Myc-regulated transcript levels. KI-MS2-008 also decreases viable cancer cell growth in a Myc-dependent manner and suppresses tumor growth in vivo. This approach demonstrates the feasibility of modulating Max with small molecules and supports altering Max dimerization as an alternative approach to targeting Myc.National Cancer Institute (Grant R01-CA160860)National Cancer Institute (Grant P30-CA14051)National Cancer Institute (Grant U01-CA176152)National Cancer Institute (Grant CA170378PQ2)National Institutes of Health (Grant CA170378PQ2
    corecore